FlexSim Simulation Software

5th Edition

o
P r'l m e r February 2025
Software Version 25.0 \

200>
e FLexaom

An »2 AUTODESK Company

“H JJIJf,

\

OO=

MANUFACTURING MATERIAL HEALTHCARE WAREHOUSING SUPPLY CHAIN
HANDLING

Allen G Greenwood, Ph.D., P.E.etireq

Simulation Education Specialist, Autodesk
Professor Emeritus, Mississippi State University

allen.greenwood@autodesk.com f\ /

© 2025 Autodesk. All rights reserved. N

Copyright © 2018 - 2025 Autodesk Inc. All rights reserved.

Published by FlexSim Software Products, Inc., The Landmark @ One Market, Ste. 400, San Francisco, CA
94105 USA.

FlexSim software and books may be purchased for educational, business, or sales promotional use. For more

information, please contact our sales department +1-801-224-6914 ot flexcsim.sales@antodesk.com.

The Autodesk logo and the FlexSin logo are registered trademarks of Autodesk Inc. Other registered trademarks
belonging to third parties are used within this work. Where those designations appear in this book, and FlexSim

Software Products, Inc. was aware of a claim, the designations have been printed in italics, caps, or initial caps.

While every precaution has been taken in preparing this book, the publisher and the author assume no
responsibility for errors, omissions, or damages resulting from the use of the information contained herein.

Version 1.1, for software version 2017 Update 2, May 2018
Version 2.0, for software version 2018 Update 2, September 2018
Version 3.0 for software version 2019 Update 2, December 2019
Version 4.0 for software version 2020 Update 1, June 2020
Version 5.0 for software version 2025, February 2025

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

ABSTRACT

This primer provides detailed, step-by-step instructions for building and analyzing a comprehensive simulation

model in the FlexSzm simulation software. It uses a single comprehensive example and a sequential development

process. The system that is modeled is small but not simple. While focusing on basic concepts and constructs

in FlexSim, the primer introduces some of the advanced features and capabilities available in FlexSiz. The

primer describes the following in detail.

o FlexSins's basic fixed and mobile 3D objects (e.g., processors, conveyors, operators) that are powerful yet
easy to use

e Building custom logic through the flowchart-like tool Process Flow

e Using powerful modeling tools such as tables, lists, reliability, charts, etc.

e Designing and running experiments with a simulation model to analyze the operational dynamics of a
system

o Utilizing FlexSins's array of modules to model AGVs, warehouses, people, etc.

In addition to basic instructions, the primer provides insight and rationale for the described modeling actions

and introduces good modeling and analysis practices.

The primer is not a software user manual, which are oftentimes reference documents. The primer provides a
means to learn the basics of Flex$7» simulation software, appreciate Flex:Siz’s power and capabilities, and apply

the simulation problem-solving process.

The primer is mainly intended for someone who has little or no familiarity with Flex:Siz simulation software.
However, in addition to new users, it is hoped that existing Flex$7 users will find the primer helpful in clarifying
some aspects of the software and learning something new.

While it is preferable that the reader be familiar with the basics of discrete-event simulation, it is [EUald

not required. However, a basic introduction to simulation is available the following primer.

Greenwood, A. Simulation Primer, FlexSim Software Products, Inc., December 2024,

A folder of supporting files that are referenced in the primer are available, as are the Flex:Si model files.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

PREFACE

This primer is based on many years of experience and my long-time passion for simulation. I started learning
simulation in graduate school and applying it in practice in my first position as an industrial engineer in the mid-
1970s. Simulation has been a significant part of my professional life in various settings and situations. These
include teaching many simulation courses at the undergraduate and graduate levels at several universities, both
in the US and other countries; developing and delivering short courses for practicing engineers in a variety of
industries; writing, presenting, and publishing research papers on various aspects of simulation modeling and
analysis; and, carrying out many simulation projects in a range of industries.

I consider simulation an applied technology that is an essential tool for effectively supporting a broad range of
problem-solving and decision-making processes. It is especially valuable for designing and managing systems
in many domains, such as manufacturing, material handling, warehousing, logistics, healthcare, mining, business
processes, etc. All of these domains are naturally complex — the complexities are due to the systems having
many disparate elements, the relationships among those elements, inherent variability, and intrinsic dynamics.
Simulation facilitates and encourages exploring and assessing multiple ideas and alternatives to “optimize”

system performance. All of this is done virtually without disturbing an existing system or before a system exists.

Many good resources are available to learn about simulation modeling and analysis in general and FlexSim in
particular, including textbooks (such as Applied Simulation Modeling and Analysis Using FlexSim by Beaverstock,
Greenwood, and Nordgren), training and teaching materials, user manuals, tutorials, blogs, videos, etc. Each
resource has its own objectives and is devised to meet specific needs. However, none of the resources by
themselves meet all of the primer’s objectives:

e Provide detailed, step-by-step instructions for building a comprehensive simulation model.

e Use a single comprehensive example and sequential development process to effectively move from
introducing and applying simple concepts and methods to describing those that are more complex.

e Offer insight and rationale for modeling actions rather than just specifying rote commands.

e Introduce good modeling and analysis practices.

e Introduce fundamental concepts of simulation.

e Offer references for further reading.

e Provide an awareness of some of the more advanced features available in Flex:S7i7 without covering the
details at that time.

The primer focuses on the modeling and analysis of operations systems to understand and analyze their dynamic
behavior and performance (referred to as gperations dynamics) using discrete-event simulation. In the broadest
sense, operations systems transform input into output through a set of related activities and processes that
require various resources, such as equipment, material, people, and information. Transformations may be
tangible (e.g., machining, inspecting, or delivering material in manufacturing) or intangible (e.g., diagnosing or
treating patients in healthcare).

Simulating operations dynamics requires an accurate representation of the system being considered, including
physical aspects (locations, distances, sizes, speeds, etc.) and the salient underlying logic (e.g., what action to
take, when and where to perform an action, and using what resources to use). Visualization of the behaviors
resulting from the interaction of the physical and logical aspects greatly increases the acceptance of modeling
and analysis by decision makers and those who are not experts in simulation technologies and methodologies.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

Visualization also enhances model validation and verification. FlexSz» has rich visual and logical functionality
and is easy to use. Of course, ease of use is relative, depending on a user’s background and experience.

Since FlexSim is so comprehensive, it is not feasible to cover all its capabilities in this introductory guide. The
primer is designed to help users navigate the extensive capabilities of FlexSzz. Completing the primer should
provide the user with the background needed to explore more advanced features through the FlexSin User Guide
or other resources.

Similarly, the field of simulation is extensive; therefore, the theory and methods of simulation modeling and
analysis are beyond the scope of this basic primer. Thus, for an introduction to simulation, the following primer
is suggested. (This primer's author is also the simulation primet's author.)

SIMULATION
PRIMER

Greenwood, A. Sunulation Primer, Autodesk Inc., December 2024.

The following textbook is suggested for a more detailed discussion of simulation modeling and analysis
concepts and practices and how they can be implemented in FlexSzz. (The author of this primer is a coauthor
of the textbook.) ontd Ston
Beaverstock, M., Greenwood, A., and Nordgren, W. Applied Simulation

Modeling and Analysis Using FlexSim, 5 Edition, FlexSim Software Products, Inc., 2017.

Other sources of information on FlexSim include the FlexSim User Manual, in-software links to the manual,
tutorials, and web resources, especially FlexSim Answers, which is a shared searchable knowledge base of
questions and answers from FlexSim’s worldwide community of users.

Again, it is important to note that this primer is not user manual for the software. User manuals are good
reference resources to describe specific aspects of the software. In contrast, this primer is a means to learn both
the basics of FlexSim simulation software and to be introduced to its power and capabilities in a way that
demonstrates how it relates to the simulation problem-solving process.

It is suggested that this primer be covered carefully and methodically in the order it is written. The material
builds from very simple aspects of simulation and modeling to the more complex. However, someone with
more experience with simulation and the software may skim the early material, but it still should be considered
since, at a minimum, it provides context. Then, later sections may then be considered in more detail to enhance
understanding of a concept or software capability. Since all the models described in the primer are available,
more experienced readers can start at a later section without building all previous models. Of course, providing
all models also benefits those new to the software.

Allen G Greenwood
revised February 2025, High Point, NC, USA
revised December 2019, Greensboro, NC, USA
September 2018, Blowing Rock, NC USA

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

TABLE OF CONTENTS

ABSTRACT ...eeeuiiteieieeerteeeteenietesserenseresssessssseressssssssessnssessssesenssssssssssssserssssssssssssnssessssssenssssansssssssesenssssssssssnssessnsanes 2
o 2 X o PR 3
TABLE OF CONTENTS ..eeuitteuietenereeeeeeenierenserensssessscersssersssssssssessssssssssessssssssssssssssessssssssssssssssesssssssnsssssnssssnssesansesenne 5
1 INTRODUCGTION....cuutttuuietenereneereenereesserenserssssessssssssssessnsesssssesssssssssssssnsssssssssssssssssssssnssessnssssssssssnsssssnsesansasse 10
1.1 OBJECTIVES «uueeeteettuueeeeererurtneaeeessesssusaeeesssssssenaseessssssannaeeesssssssnnsesesssssssnnnseessssssnnsesesssssssnnnsessssssssnnnneesssssssnnnns 10
1.2 STRUCTURE .. etettttttteeeeeeeetrteeeeeseeasataaeeessessssaaseessesstanseeessssssnnnsesesssssssnnnseessssssnnnesesssssssnnnsesessssssnneneessessssnnnns 10
1.3 AAPPROACHcettttteeeeeeerttteeeeeeeterataaaeeesesessanaseessesstsnneeesssssssnnseeessssssnnnnsesssssssnnnesessssssssnnseesssssssnnneessssssnnnnneneees 13
1.4 TESTIMONIALS cevvttueeeeererersneeeseeeessssueeeesesssssnnaseesssssssnneeesssssssnnseeessssssnnnesesssssssnnesessssssssnnsesssssssnnnneessssssnnnneeneees 14
1.4.1 Why FlexSim Simulation SOftWAIE?..........cccueecueeeieesiieeiiessieesieestteesteesteesta e s staessteasssaaessasessseessses 14

1.4.2 The road t0 CROOSING FIEXSIIMc...ooeeeieeeiiieeieeete et s e tte ettt tte e sttt esta e s te e s teestasssseesseaesseaeans 16
PART | = GETTING STARTED WITH FLEXSIIV......ttuiiteiiienirteeietenereenereneessensersssssensssssnsssssssesensssssnssssnssessnssssnssssens 18
2 GETTING STARTED WITH FLEXSIM SIMULATION SOFTWARE........ccccotteireirencrnreecensrescressrescrossenscesssenssenenes 19
3 FUNDAMENTAL CONCEPTS....ccutttuittenieteneereneiereesietesserensssssssessssssssssssssssessssssssssssssssssnssessnssssssssssnsssssssessnsssse 22
3.1 SIMULATION MODELING AND ANALYSIS 1.uuuteeerretruneneseeererssuneeeeessesssunasesessssssssesesssssssnmmesesssssssnmeeessssssssnmnseesssssssnnnns 22
3.2 SIMULATION USING FLEXSIM «vveeeeeeeeettuieeeeeseeessniaeseessesstnaeesessessssnasesesssssssnnesesssssssnnmesessssssnnnnsessssssssnieeessssssssnnnns 23
3.2.1 (0]) =lor A W]] [T 23
3.2.2 oo) <o) RN 24
3.2.3 Yo 1A KSR 24

3.3 NOTATION AND FORMATTING CONVENTIONS ..uueeereeeruunnereeererssnneeeeessessssesesessssssnnaeessssssssnsessssssssnaaeeesssssssnnsesessssnes 25

4 FLEXSIM’S MODELING ENVIRONIMENTcotttueiiirierneeierreennsssereessssseseesnssssssssssssssssessssssssesssssssssssnssssssssnasssssses 27
4.1 MAIN IMENU AND IMAIN TOOLBAR ...uuteettrtttueeeeeeeerssieseessssssnnaaeessssssssnesessssssssnnaeessssssssnesessssssssnneeessssssssneesessesses 29
4.2 IMODEL EXECUTION TOOLBAR ...cevtuuueeeerertstneeeeeeeresssiaesessssssssnaeeessssssssnesessssssssnnaeessssssssnsesessssssnsaeessssssssnsesessssses 30
4.3 3D MODEL VIEW WINDOW, MODELING SURFACE, AND MOUSE OPERATIONSvuuuueeeererrrtneneeeeerersnneeeeessesssneeeessessssnnnns 31
4.4 OBJECT LIBRARY AND TOOLBOX «..eeeevvvuuuneeeererersneeseessssssnneeeeessesssunasesesssssssnnesesssssssnmesessssssnsneessssssssnmneessssssssnnnns 32
4.5 O BJECT INTERFACE 11 uuueteettruruueeeeesseessuueeeessssssseeseessssstsnnaesessssssssnsesessssssssnnsessssssssnsesesssssssnnneesessssssnsneeesssssssnnnns 33
4.6 HE L ettt et eee ettt ee et e ettt re et e e e ettt eeeee et ea st e eeeeesasata e reeesaasta e eessasanaaaeeeesastnnaeaeeeraraaeeeerearaaaeeererartaaeaererrren 36
4.6.1 L0 =T a1 Lo T 1Y o | RN 36
4.6.2 ONIINE N@ID ...ttt e ettt e e et e e ettt a e e et e e e stataaeeetsesaeetsaaeessssaaeasssenaans 37

5 BUILDING THE SIMPLEST SIMULATION MODEL......ccccteueteirencrentrencrenceeeesssescsessssscrasssnsessssssssssssssssssssasesasssnne 38

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

PART Il = MODELING THE FINISHING AREAcuuuuiiiiiiiiiiiiiiniinnnssssssssiiiiinsesssssssssssssssssssssssssssssesssssssssssssssssssnns 44

6 THE EXAMPLE MODEL FOR THIS PRIMERccuuttttiittnerteniereneierenserensseressessnssessssessssssssnssssssssssnssessnsessnssessnnes 45
6.1 DEFINING THE SYSTEM AND PROBLEMcevvttuieeeeeeerutiereeeresstnaeeeessessssnesesessssssnnseessssssnsnnsessssssssnmneeessssssssneesessssses 45
6.2 IVIODELING APPROACH .vvttuueeeretttuuiieseesessssnaeeesssssssnnesessssssssneeessssssssnsesssssssssneeessssssssnnsessssssssnaneessssssssnneesessssnes 46

7 BASIC FIXED RESOURCES, FLOWITEM BIN, AND INITIAL CUSTOMIZATIONcccceteeirencrenrrencennsencsencseneransenne 49
7.1 BASIC OBJECT PROPERTIES AND STRUCTURE vvuuueeerreerssunereeeresssnneeesssessssnesesesssssssnseessssssssnnsesessssssnaseessssssssnneesessssses 49
7.2 SOURCE OBJECT evvttuuueeeererursnsesesssssssuseeesssssssnneseesssssssnneeeessssssssnsesessssssssnsesssssssnnmesesssssssnnneessssssssnsneessssssssnnnns 51
7.3 FLOWITEM BIN 1euueiieeiiiiieeeeeeeeeicie e e ettt ee e e e e e ettt e e e e e e e eaata e eeeessasasaaseeeessssannnsaessssnannsesesssssnnnneeesssssnsnnsesesssnren 55
7.4 (O 18] =10 0 -] ={ox LTS 58
7.5 PROCESSOR OBJECT ..eevvttuuieeereeetuueieseereressseaeeessssssssesessssssssneeessssssssnsesssssssssnseessssssssnnsesessssssnaneessssssssnneesessssses 58
7.6 SINK OBJECT 1ueteietttuueeeeererurtneeeeeesesssuuaeeesssssssanaseesssssssnnaeeesssssssnnsesessssssssnnsesssssssnnesessssssnsnnseesssssssnnnseesssssssnnnns 60

8 BASIC MODEL OUTPUTcuiteiiteireeerenerencrensrascesssesssesssesssasssssesasssassssssssssssssssssasssssssasssnsssssssnssssssssssnsssasssassnnne 61
8.1 OBJECT STATISTICS AND PROPERTIES ..vttuuueieeeeeeruuiiereeererstueeeeesserssunaeesesssssssneseesessssnsesessssssssneeessssssssnieseesssssssnnnns 62
8.2 DASHBOARDS .vvtueeeerereriieeeeereesssneteeeesesessnaaeesssssssanasesessssssneeessssssssnnsessssssssnnneessssssnsnnsesessssssnnneessssssnsnneesessssnen 62

8.2.1 LR =T L3) o SRRt 64
8.2.2 TIiME-SEIIES PIOt DY TYPC .ottt e e st e ettt e st e ettt e s tta e st e s st e sstaesasaesssesssseasaseasnssasans 66
8.2.3 Ly e o T 01 o) (o] SRS 67

9 TASK EXECUTERS ... ctteuiiitniirtenirteenirteneteasertessersnsseressessssssssnsssssssessssssssssssssssessnssssssssssnssssssssssnssesansessnnsessnnes 71
9.1 BASIC TASK EXECUTER CONCEPTS 1vvvuuueeertrussnneeeeeesessssneseesssssssneeeesssssssnesesssssssssnseessssssssnsessssssssnneessssssssnnsesessssses 71
9.2 ADDING A FINISHING OPERATOR TO THE MODEL ..uueeevvvuruueeeereersssneeeeersssssnnaesesssssssnnaeeessssssssneeessssssssnmasessssssnsnneseees 72

10 BASIC LOGIC WITHIN THE PROCESSOR OBJECTccteeiteeireecrenrrnncresseecessssssesssasesesssascsesssnsesassssssssssanssassses 79

PART lll = FURTHER DEVELOPMENT OF THE FINISHING AREA.........cu i cierreceereereecsencransrnscrassenssesssesssesssenssassnnne 83

11 CUSTOMIZE OBJECTS TO REPRESENT SYSTEM BEING MODELEDccceeueieeiiencrenirencennrreceecrencsenssencrancnnns 84
11.1 CHANGING OBJECT GRAPHICS . 1uuueeerrerrruieeeersesssnnaeseessessssneeeesssssssnaeesessssssssesesssssssnnmesesssssssseeesessssssnmeeessssssssnnnns 84
11.2 CHANGING THE FINISHING MACHINE’S (PROCESSOR) GRAPHICuvieeeiurireeeiureeeeeireeeesireeeeessreeeeesseeeessresesenssesesannees 85
11.3 CHANGING THE CONTAINER STORAGE’S (QUEUE) GRAPHIC «..uvveeeiutieeeesureeeeeiureeeeeseeeeessreeeeessseeesasssesessssesesenssesesnnsees 87
11.4 [TEIVE ROUTINGS 1uueeeeeerurtneeeereeessneeeeesessssnnaeeessssssssnesessssssssnnesessssssssnnsesssssssssnnesssssssssnnsessssssssnnseessssssssnnsesessssnen 90
11.5 CHOOSING A ROUTING BASED ON AVAILABILITY 1vvuuuuereeereruuueeeeerserssunaseeesssssssnneeesssssssnsesessssssssnmeessssssssnmneessssssssnnnns 91
11.6 CHOOSING A ROUTING BASED ON CURRENT SYSTEM CONDITIONS ..evvuuuuneeeerereruniieeeeerrsssnneseessssssnneeeeessesssnnneeesssssssnnnns 92
11.7 CREATING MODEL VIEWS ..evvtvtueeeeeeserssuueeeessessssneseessessssneeeessessssnsesessssssssnesesssssssnnmesesssssssnneeessssssssnnneeesssssssnnnns 93

12 EMPIRICAL DISTRIBUTION AND DISTRIBUTION FITTINGccotteueienrrencenreeceencresceessrescresssnssrssssnsssssssnssansses 95
12.1 USING AN EMPIRICAL DISTRIBUTION FOR PRODUCT IMIX ..ueeervvrtueneeerererssunesesesssssnnneeeesssssssnnsessssssssnseeesssssssnneesessssnes 95
12.2 USING AN EMPIRICAL DISTRIBUTION FOR DISTRIBUTION FITTING 1uuueeeerrruunneseeersessnneeeessessssnesessssssssnaeeesssssssnseesessssses 98

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 6 72 AUTODESK

13 MODEL PARAMETER & GLOBAL TABLESccoiciiiiiiiiiiinnitiniinniieinsaniseissssnssssssssssessssssssssesssssssssennas 102

13.1 IMIODEL PARAMETER TABLES «..eetvvtuuueieeerrtrrunieeeeeressrsnaseeesssssssnseeessssssssnesessssssssneeessssssssnnsessssssssnnneessssssssnnseneees 102
13.2 GLOBAL TABLE TO STORE ARRIVAL TIMES ... eevtvtruueseeereeersunaeseesessssnnaeeesssessssnneeesssssssnseseesssssssnneesssssssssnaneesssssssnnnns 104
14 DOWNTIIMEceuiiieniireenerteeneeennierensereasesenseesssseressssssssssssssesssssssssssssnsssssssssensssssnssssnssessnssssassessnssessnssssnnes 107
14.1 TIME TABLES «.etttuuueeeeeeerunteeeeeeeeessnaeeeesersssnnaeeessssssnnnssesssssssnnsasessssssssnnsesessssssnnnseesssssssnnsesessssssnnneeesssssssnnnenenes 107
14.2 CHART OF OPERATOR UTILIZATION AND STATES teevvvtereerereereerereresesesesessnnnnnns 112
T4.3 RELIABILITY tiieieiiiiiiiiiiiiieiieetee ettt eeeeeeeeeeeeeeeeeeeeseeeeeeee e e e e s e s e s s sesssasssesessssssssssssssssssasssssssasessssrasesssssssesssnsnsssnsnnnnnnn 114
14.4 CONSTANT MTTF/MTTR; MTBF BASED ON CLOCK TIME; NO RESOURCE FOR REPAIRvvveeeiiurieeieneeeessveeesssseesessnns 114
14.5 COMPOSITE STATE CHART .eevttuueeeeeretttuuaeeeeressssnsesesssssssneseessssssnneeessssssssnsessssssssneseesssssssnseeessssssssnnsessssssssnnnns 118
14.6 RaNDOM MTTF/MTTR; MTBF BASED ON SYSTEM STATES; RESOURCE FOR REPAIR ...evvveeiuereeeireeeeeisreeessneeeessseeeeas 120
14.7 STATE CHART FOR EACH FINISHING MACHINE ...c0uuuuuteeeretersuieeeeeeeesssnnaeeesssesssseeesessssssnaseessessssnneeeesssssssnsessssssssnnnns 123
PART IV — MODELING THE PACKING AREAcetuiiteiiteneirtenereeseetenserensiessssessssssranssssnssssssssssssssssnsssssssessassssansens 125
15 MODELING THE PACKING AREA — PART L ... ccuiiiteiiieeiitenietennertenserensieressesenssersnsssssssesssssssansessnsssssnsssennes 126
15.1 DESCRIPTION OF THE PACKING AREA AND MODELING APPROACH 1.vuuueerertrttieeeeeeesssneeeesesesssnnesessssssssnneesessssnsneeseees 127
15.2 FLOW ITEMS FOR COMPONENTS ..vvvuuunteeerrersnnnaeeeesessssnseeesssssssnaseesssssssssnesessssssssnmeeessssssssnnsessssssssnnneessssssssnnneseses 128
15.3 STORE OPERATION DATA IN TABLES .evvtuuueeeerersuuneseeereesssnnaeseessssssnnnaeessssssssneeeesssssssneseesssssssnneeessssssssasessssssssnnnns 129
154 CREATING BATCHES OF COMPONENTS ..1uuueeeerertssnesesererssssneseessssssnnmesessssssssneeessssssssnneseesssssssnmeeeesssssssneessssssssnnns 130
15.5 QUEUE OF BATCHES AWAITING PROCESSING ..vvvvvuueeeeererersuneseereesssnnnesesssessssnneessssssssseseesssssssnneesesssssssnseesssssssnnnns 134
15.6 STORAGE AREAS FOR COMPONENTS .evvtuuueeeerersrnnseeessesssnneeeessssssnnsesesssessssnneeesssssssneseesssssssneaeessssssssnsessssssssnnnns 135
16 MODELING THE PACKING AREA — PART 2ceuuiiteirieeeirtenetensertensersnsiesssseressssrsnsssssssesssssssassessnssessnssssnnss 138
16.1 UNPACK COMPONENTS USING THE SEPARATOR OBJECT 1uuuueererrruuneeeereressnnesesseesssnnseeessssssssnseessssssssnneeessssssnsneeneees 138
16.2 FINISHING OPERATOR TASKS ..eeettttuuuteeerrerssnneseeesessssnasesesssssssnaeeeessssssssesessssssssnmeeessssssssnnsessssssssnaneessssssnsnneseses 141
16.3 CONTAINERS ARRIVE BY CONVEYOR ..cvvtuuueeeererssnneseeersesssnneseessssssnnneeesssessssnnsessssssssnaseesssssssnseesesssssssasessssssssnnnns 144
16.4 PACKING CONTAINERS BY TYPE USING A COMBINER OBJECTccvvuuueeeererersnnereesresssnnseeeessessssnesessssssssnneeesssssssnneneees 146
16.5 PLACING COMPONENTS IN CONTAINERS BY ROBOT ..cvvvvuuueeeeeerrusunseeereressnnnesessessssnnseeessssssssnnsessssssssnsneessssssssnneseees 152
16.5.1 Defining the robOt’S OPEIALIONSccccuveecieeeiiieeiieesieesieesttteste e st esste e s taesteesstaesssesssssaessssesssaensses 152
16.5.2 Downtime in the PACKING AF@Qcccueeeueeeiieeeiieesiisesiie ettt esta e st e stsesteassseesstaesssessssssessssessseessses 153

16.6 CHECK COMPONENT INVENTORY LEVELS 1uuueeerevtusneeeeeserersuneseessssssnnneeesssessssnseesssssssnesessssssssnneesesssssssnsessssssssnnnns 157
PART V — RESOURCE TRAVEL, EXPERIMENTATION, CONVEYORS, AND LISTScccieirecrerrecenreeceencrencrenssnneranes 160
17 MANAGING OPERATOR TRAVEL......oteuiieeeietenerennertenniereniereaseseessessnsiessssessssssssnsssssssesssssssassessnsssssnssssnnss 161
17.1 CONTROLLING TASK EXECUTER TRAVEL WITH PATH NETWORKS...ceevvtuuueeeeererarneeeeeeeessnnieseeerersssnneeeesssssssnnsesssessssnnnns 162
17.2 CONTROLLING TASK EXECUTER TRAVEL WITH A® NAVIGATION ...uuuvirriiieeeiieiiitereeeeeeeesiiisreeeseeesesssssssesessesessssssssens 168
17.2.1 The basics of A* using a simple Study MOdEel..............ccoeecvevveeeiiiesieesitesieesit e s e s see s 168
17.2.2 Implementing the A* algorithm in the primer MOdelcc.ccovevceeeciveeiiessieeiisesieesisesieesanns 172

18 EXPERIMENTATION IN FLEXSIIM ...cuuiieuiiiteiiteeerennertenseeeenserenseseessessnsssssssessnsssssnsssssssessassssansessnsssssnssssnnes 176
18.1 EFFECT OF BUFFER SIZE ON PERFORMANCE ..vvuuuneeeereruruueeeeereersssneeeeesesssssnnesesssssssnnaeeessssssssnnsessssssssnneessssssssnnneseees 178

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION / 72 AUTODESK

18.2 EFFECT OF COMPONENT REPLENISHMENT PLAN ON PERFORMANCEccvvvuuuneeeerrrerrnnneeeeeressnnnesessesssssnnneeessessssneeseees 183

19 MATERIAL MOVEMENT VIA CONVEYORS ... ccuieiirierenirencrenteecesssesssessseseresssnssrasssnssssssssssssssasssasssnsesnnes 187
19.1 GENERAL DESCRIPTION OF CONVEYOR OBJECTS cvvuuuuneeereerruuneseereesssnnnesessressssneessssssssnmeeeesssssssnmeeeesssssssnnsessssssssnnnns 187
19.2 INCORPORATING CONVEYORS INTO THE PRIMER MODEL ..uueeveevtuuieeeeererersneeseeseesssnnneeessssssssnneessssssssnneeessssssssnnneseees 191

20 USING AN ITEM LIST FOR COMPLEX MODELING LOGIC.....ccccevueeuereecrenerencressrnncrosssnscesssesssesssesssasssnsesnnes 199
20.1 PARAMETER UPDATES .evvvtuueeeeerttsuuieeeeessesssneseesssssssnseeesssssssnseesssssssssnesessssssssnmeeessssssssnnsessssssssnneessssssssnnaeseees 200
20.2 SIMPLE PRIORITY ROUTING USING AN OBJECT TRIGGER ..evvvuuuuereererrrsnnneeeeerersnneeeesssesssneeeessessssnneeeesssssssnnseesssssssnnnns 203
20.3 MULTIPLE-CRITERIA ROUTING USING LISTS 1evtuuueiieeiititiiieeeeeeeittiieeeeeeessssnieeesssesssnnseeesssssssnneeessssssssnneessssssssnnneseees 204

PART VI - MODELING USING PROCESS FLOW + WAREHOUSING AND AGVccecteeerenrrencrensrecensencsensrescsesssnseranes 212

21 INTRODUCTION TO PROGCESS FLOWceeiiureeirenirencrensrmncrosseessesssesssesssesesasssnsssasssnsssssssnssssssanssasssnsesnnes 213
21.1 BASIC PROCESS FLOW CONCEPTS AND MODELING ENVIRONMENT ..uueererrtutieeeeeerestnneeeesssessnnnesesessssssneeesssessssneeeeees 214
21.2 SET UP TO USE PROCESS FLOW TO MODEL INVENTORY POLICY ...eevvvtvuueeeeereranneeeeereessnneseeesessssnneeeesssssssnnsessssssssnnnns 217

22 MODELING INITIAL INVENTORY ...ccuottuuereneierenerennerrensersanserensesesssesssssessssessssssssnsssssssesssssssassessnsssssnssssnnss 219
22.1 A SIMPLE APPROACH «..evvvtttueeeereetttuaeeeesesssunaesessssssnnnesessssssssnnasessssssssnnsessssssssnnssessssssssnnsessssssssnnneeeessssssnnneseees 219
22.2 A MORE GENERAL APPROACHceetvttueeeeeeertssneaeeeesesssnneeesssssssnnaasesssssssnnnsessssssssnneeeesssssssnnsesessssssnnseesssssssnnneseses 225

23 MODELING INVENTORY REORDER POLICY ...cuceuiieuireeerencrencrensrecesssesssessseseressrnsssasssnsssssssnssssssasssasssnsesnnes 234
23.1 CHANGES IN 3D OBJECTS FOR USE IN PROCESS FLOW «.eiiiiiiiiiiiiiiiiie ettt e e eeeeees 234

23.1.1 Yo [0 Iy oY [0 TN (e | o) (=X SR 234
23.1.2 LAY e g (o [ol] (o] SRR 235
23.1.3 Create 0 COMPONENTE OFAEI TEEM........ccccuveeieeeciieeeieeciieeeteesttteste e st e st e s e e s steesstaesssesssssasssseessseensses 236
23.1.4 Remove objects for SCREAUIEA OFAErSc.c.uoeeeeeciiieeieeiiieeeese ettt sae e seesta e sae e 236
23.1.5 Create O STOrAGE GIOUDueeeeeeeeeeeeeeee ettt ettt e e e e e ettt e e e e e e st eeeaaeeeesasssneaeeens 237
23.1.6 Add and update component properties in tabBIESoooecueeeeeeieeeeeeiieeeecieeeeeieeeeecieeeesieaann 237
23.2 IMPLEMENTING REORDER-POINT INVENTORY LOGIC USING PROCESS FLOW ...uuiiiiiiiiiiiieeeeeeeeiiie e eeeeevtee e e eevenane e 239
23.2.1 “Check INVENTOIY EVEI” [OQICveeueeeiieesiieesieeet ettt e et e s ste ettt e s e e st e s teestaesseasteaesseasns 241
23.2.2 R T=e o (=1l (o e | TR SPPN 245
23.2.3 AL dN =T T e (=T il o Yo oSSR 255
23.3 VALIDATION & IMIODIFICATION 1ieieieieieieieieieieieeeieiieeeeeeetteeeeeseeeseeeeeseseeeseseseseseeseeeseseseseseresssesesessssesssssssssssssseeee 256

24 USE OF RACKS TO STORE CONTAINERS IN THE WAREHOUSEcccceeutteeerenirencrenrrnncenseesesesencsesssnncrnnes 261

25 ORDER FULFILLMENT SUBIVMIODEL......cccteutteettieerencrenceencreeessescsessseserasssnssssssssssssssesssasssasssasssnsesasssnsssnsses 269
25.1 DEFINITION OF THE ORDER-FULFILLMENT PROCESS ..evvvvuuueeeeeerrsssneseeeseressnnnesesssssssnnseeessssssssneessssssssnsneessssssssnnneseees 269
25.2 IMPLEMENTATION OF THE ORDER-FULFILLMENT PROCESS «...eevvvvuuueeeererersnneseeseesssnnneeesssesssnnneessssssssnneessssssssnneneees 270
25.3 MODELING ORDER-FULFILLMENT IN PROCESS FLOW ..eutuuieeieeiiiiieeeeeeeeitiiieeeeeeeettteeeeeesessnnnneesessessnnnneeeesessssnnneneees 281

25.3.1 Order-Fulfillment Process Part 1 - GENEIate OFUEISccveevvesiuveeieesiiiesieessiiesiesssieessisssssessses 282
25.3.2 Order-Fulfillment Process Part 2 - COMPIEte OFderS..........cuuevveiiiveeieesciieeiiessieesisesieesisssinesans 288
25.3.3 Order-Fulfillment Process Part 3 - FUIfill OFAErSc.oecuieecueesiieeiiesieeeieessieesesssieesiisesiee s 292

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 8 72 AUTODESK

25.3.4 Order-Fulfillment Process Part 4 — Initial INVentory OFderscceccvueecveecveessieeeiiesesiieesisesinennnns 295

25.3.5 Define and chart performance indicators for the order-fulfillment process..........ccccocvevvvvevveennn. 300

26 AGV TRANSPORT BETWEEN PACKING AND WAREHOUSEccceecttiirereecencreeceencrencsessenscressenssenssansens 305
26.1 AAGY PATH .eeeiitiieeeee ettt ee et e e e ettt eeeeeeserast i aeeeesessasanneeessassanssesssssssannseeessssssnnnseessssssannsesessssssnnneeeesessnsnnnenenes 307
26.2 CONTROL POINTS cetttuieeeeeettttiieeeeeeetttatiaeeeererstsnaeeeseesssnnnaseessssssnnnasessssssssnnsesessssssnneseessessrsnnsesesssssssnnseesssssssnnnns 309
ST T X C 1V TPt 311
26.4 CONTROL AREA ..otttuueeeeeeetttteeeeeeesssnnaeeeesessssnaasesssssssnnsesssssssnnesessssssssnsesessssssnneseesssssssnseesesssssssnneeesssssssnnnns 312
26.5 DASHBOARD CHARTS FOR AGV AND OTHER RESOURCESceevvvuuieeeeererersunieeeeeeesssneeeesssesssnneeessssssssnaneessssssssnneneees 315
PART VIl = SUMMARY AND APPENDICESc.ceuettuiteuireecrenermncressrecesssesseesssescsesssssesssssnsesssssnssssssssssssssasssasssnseranes 319
27 SUMMARY OF THE PRIMER IMIODEL......ccucteuttieeienirenceenceereeesescresssescrasssnsessssssssssssssssasssssssasssnsssasssnsesnsses 320
27.1 DESCRIPTION OF MODELING EACH MAJOR AREA OF THE FACILITY 1uuuueeeeererutiieeeeererssnnneeesesesssneeessesssssneeesssessnsneeseees 321
27.1.1 Finishing Area and CONVEYO!r TIANSPOIt.......cccueeeveeciieesieeiiiresiteesieesissesteessseessssesssesssssssssssessssessses 321
27.1.2 Packing Area and AGV TIANSPOITcc.veeeieeeieeesiieeiteeesie ettt esteesieesiteestaesseesssaasssessssssessssssssesnsses 324
27.1.3 Warehousing Area and Order FUIfilIMENT............c..oovueeeuiesiieeiieesieesiseeteesiitesteesteessieessieaessne e 326

27.2 KEY PROPERTIES OF EACH ASPECT OF THE MODEL. vvvvuvuuneeeeeeersssneeeeesersssnnaeseessssssnnseeessssssssnnsessssssssnmneessssssnsnneseees 328
27.3 EPILOGUE «.eeevttitiieieeeeetttee e e e e ettt et e e e e ettt e e eeeeeaaba e eeeeessasaanaeeeesssssannsaessssssanneeeessssnannsesesssssnnnneeeessssnsnnneneees 334
APPENDIX A — GLOSSARY OF KEY TERIMScoeeuiieitereecteteeceenerencsessrnscrasssnssssssesssasssasssssssasssnssensssnssnnssenssanssnns 336
APPENDIX B — PROGRAMMING-BASED PROPERTY VALUES......coctcciteirecrenireceereensencrescsessrascsessenssssssnnssenssanssens 345
APPENDIX C— MODEL SUMMARIEScccteutieerettncreteessesstescsessroscsesssassrassssssssssssssssssasssssssasssasssnsssnssnnsssnssasssans 347
ABOUT THE AUTHOR ... oo ieiiteiterteictnereecreserescressensseassesssesssesssssssasssssssssssasssnssssssasssasssasssasssasssnsssnsssnssnsssenssanssnne 351

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION ‘ 72 AUTODESK

1 INTRODUCTION

This section provides the primer’s objectives, structure and organization, and general approach.

1.1 Objectives

As stated in the Preface, the objectives of this primer are to
e Provide detailed, step-by-step instructions for building a comprehensive simulation model

e Use a single comprehensive example and sequential development process to effectively move from
introducing and applying simple concepts and methods to describing those that are more complex

e Offer insight and rationale for modeling actions rather than just specifying rote commands
e Introduce good modeling and analysis practices

e Introduce fundamental concepts of simulation

e Offer references for further reading

e Provide an awareness of some of the more advanced features available in Flex:Si# without covering the
details at that time

1.2 Structure

To meet these objectives, the primer is divided into seven sections and composed of 27 chapters and three
appendixes.

This first chapter defines the primer’s objectives, structure, and approach. It also addresses a common question
that often arises from those unfamiliar with Flex:Siz simulation software — Why should I use FlexSim? Two long-
time users of FlexSim provide testimonials about why it is their simulation software of choice and their path to
choosing it. One testimonial is from an academic perspective, and the other is from an industry perspective.

After this introductory chapter, Part I — Getting Started with FlexSim is comprised of four chapters.

e Chapter 2 describes FlexSim’s features and capabilities at a very high level as well as licensing and how to
obtain the software.

e Chapter 3 defines general simulation terms and terms that are specific to FlexSim, introduces major parts
of the software, such as the Object Library, Toolbox, and means for analysis, and defines the notation and
formatting used in the primer.

e Chapter 4 explores the FlexSim modeling environment, including menus, toolbars, modeling workspace,
interfaces, etc.

e Chapter 5 describes in detail how to build the simplest simulation model, a simple queueing system.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 10 72 AUTODESK

The remainder of the primer describes simulation modeling and analysis using FlexSim by developing the model
shown in the following screenshot. It is the conceptual design of a manufacturing facility composed of six main
areas: finishing (machining), transport by conveyor, packing, transport by AGV, warehousing, and order
tulfillment.

-

P Le-B-8- 443D of Took JrAoettemBn] Eecd 1 Trn [Sot # Sackgronds b Dasrboonds 41 Process Fow 18 Wosoos
e () - =} -~
s P i @l Stop W9 Fas Forverd B S D) Step Ruy Tene: | 480000 * fun Spoed 1 mi .

Part 11 — Modeling the Finishing Area. The modeling of the primer example begins by defining the system that the

model will represent. It then describes the development of a simulation model of the first part of the production

system, the Finishing Area.

e Chapter 6 defines the system that is modeled throughout the primer. It also describes the modeling
approach that is used.

e Chapter 7 creates the initial model of the Finishing Area and introduces FlexSin’s basic Fixed Resource
objects.

e Chapter 8 describes basic object statistics and creates a dashboard with time series and histogram plots of
measures of performance for the Finishing Area.

e Chapter 9 introduces mobile resources, referred to as Task Executers in FlexSim, and adds a Finishing
Operator to the model.

e Chapter 10 looks into the Processot's operation, which is one of the basic 3D objects. It is meant to help
the reader better understand what is happening behind the scenes in the basic 3D objects. Thus, this chapter
does not add features and capabilities to the primer model.

Part I — Further Development of the Finishing Area. The model of the Finishing Area is enhanced by changing

object graphics and routings and introducing some of Flex:Siz’s many modeling support tools.

e Chapter 11 changes the Finishing Machine and Container Queue graphics and employs new item routing
rules. It also introduces model views.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION] 72 AUTODESK

e Chapter 12 uses the Empirical Distribution tool to define the product mix of containers entering the
Finishing Area. It also uses the Empirical Distribution tool to fit system data to a probability distribution
that best describes the arrival process of containers to the Finishing Area.

e Chapter 13 introduces two types of data tables that help organize information used in Flex:Siz models:
Model Parameter Tables and Global Tables.

e Chapter 14 adds several types of downtime to the model. Break and lunch times are added for the Finishing
Operator, i.e., when the operator is unavailable to do system work. Two types of downtimes are considered
for the Finishing Machines. The first is a quality check that occurs on a fixed clock-based schedule; the
second is randomly occurring breakdowns that are based on the object’s state. Machine breakdowns require
a Finishing Operator for repairs; the quality checks do not require an operator. Pie charts are introduced
to summarize the utilization and percentage of time the Finishing Machines are in various states. The charts
are added to a new dashboard.

Part IV — Modeling the Packing Area. This section involves modeling the packing of finished containers with

components.

e Chapter 15 first provides an overview of how the packing area works. Subsequently, component items are
defined, as is how and when they are created (in batches). A data table is created to store information on
the operation. Storage areas for the components are added to the model.

e Chapter 16 uses the Separator object to unpack batches of components when they arrive. The unpacking
task requires the Finishing Operator. The Combiner object is used to model the packing of containers with
components. A robot places components in containers. The Packing Robot is subject to state-based
downtime like the Finishing Machines, and the Finishing Operator performs the repairs. A time series plot
is added to show the inventory levels of the components over time.

Part V — Resource Travel, Excperimentation, Conveyors, and Lists. The primer’s simulation model is further developed

by exploring and using several powerful features of FlexSin — alternative means to control task executer travel,

experimentation and the analysis of scenarios, the use of conveyors to transport items, and the use of the List

tool to implement more complex routing logic.

e Chapter 17 considers two ways to control Task Executer travel: via a path network and the A* algorithm.

e Chapter 18 introduces FlexSim’s Experimenter, which provides a convenient means to consider simulating
multiple scenarios and replicating each scenario. The Experimenter is used to study two aspects of the
system modeled so far — (1) the effect of the size of the buffer of containers prior to Finishing on
performance and (2) the effect of component replenishment plans on performance.

e Chapter 19 introduces the Conveyor objects and adds conveyors in the model to transport containers
between the Finishing and Packing Areas and after packing to the warehouse.

e Chapter 20 adds more complex routing logic in the Finishing Area in terms of how containers are selected
for finishing. The logic is implemented using the List tool.

Part VI — Modeling Using Process Flow + Warehousing & AGVs. This section uses FlexSin’s powerful logic builder
to complete the primer model. After an introduction to Process Flow, it is used to include initial component
inventory in the model, implement a means to manage component inventory through a reorder-point system,
and represent the order-fulfillment process. This section also introduces two additional FlexSim constructs that
are key to modeling many operations systems — Racks and Warehousing objects and AGVs and their associated
objects.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 12 72 AUTODESK

e Chapter 21 provides an introduction to Process Flow, including basic concepts and the modeling
environment. It also describes some additions to the model that support the use of Process Flow.

e Chapter 22 describes several approaches to modeling the creation of an initial component inventory and
explains how to implement the more general approach.

e Chapter 23 uses Process Flow to incorporate a reorder point inventory system to manage components.

e Chapter 24 introduces the Rack object and describes its use to store packed containers in the warehouse.

e Chapter 25 defines the order-fulfillment process and describes how to represent it in the model by using
Process Flow. The process includes generating orders for containers, having an Order Picker gather the
appropriate containers, delivering a completed order to a fulfillment area, and completing orders by
updating an information system. Also, an output table is created that captures information on each order,
including the contents of each order and the time it takes to fulfill orders. Charts are also added to track
the time it takes to fulfill an order and how many orders are waiting to be processed.

e Chapter 26 implements an AGV system to transport containers from the Packing Area to the Warehousing
Area. A Control Area is added to the AGV network to restrict traffic in the area to one task executer. A
chart is added to track the AGV’s utilization.

Part VII — Summary and Appendices. This section provides a summary of the primer model, three appendixes,

and a brief bio of the author.

e Chapter 27 describes each major area of the model — Finishing Area, Conveyor Transport, Packing Area,
AGYV Transport, Warehousing, and Order Fulfillment — and summarizes key properties of the model.

e Appendix A is a glossary of key terms used in the primer.

e Appendix B describes and explains elements of FlexSerpt (a subset of C++) that are encountered in the
primer when discussing setting some property values.

e Appendix C provides a brief description of the concepts and software features added in each primer model
and a reference to the section where the model is discussed.

e About the Author provides a brief bio of the primer’s author.

1.3 Approach

As the objectives above mention, the primer introduces and explores FlexS7m through a single model. The
model is small but not simple. Its complexity evolves throughout the primer as various aspects of the

simulation software are presented.

Since the model of the example system evolves throughout the primer, it is recommended that each iteration
of the model be saved. After each save, it is suggested that the current model file be copied and renamed so
that one can always revert to a previous version of the model. This is just good modeling practice — models
should always be developed in steps — build, test, and validate — and all models should start simple and then
add complexity as needed. That is, the final model evolves from a number of simpler models with increasing
representation of the real system. One should never try to incorporate all capabilities at the beginning of the

modeling process.

To facilitate learning, all of the models developed in the primer are available so that if a reader has a problem
developing any one of the primer models, they can access and view the correct implementation and then

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 12 72 AUTODESK

proceed with the primer. Access to the primer models also allows a reader with some knowledge of FlexSim to
skip the simpler parts of the model-building process and start at any section of the primer. For example, if a
reader is well versed in the 3D aspects of Flex:Simz, but needs to become more familiar with Process Flow, then
they can start the primer in Part VI and begin with the model from the end of Part V.

The FlexSim models from throughout the primer and model resource files (3D representations of work area

objects and an Exve/ data file are in a folder named Resources) are available.

1.4 Testimonials

This section provides two testimonials, one from an academic perspective and one from an industry
perspective, that discuss why FlexS7 is their simulation software of choice and their path to choosing FlexSin.
Each testimonial is from a long-time user of FlexSim and co-author of the textbook Applied Simulation Modeling
and Analysis Using FlexSin.

141 Why FlexSim simulation software?

Provided by: Allen G Greenwood, Ph.D., P.E.
Professor Emeritus, Industrial & Systems Engineering, Mississippi State University
Simulation Education Specialist, Autodesk Inc.

There are a number of simulation software products available in the marketplace. Some have been around for
many years, while others are quite new. A common question in industry and academia is why FlexSim should
be used instead of other software available in the market.

I believe that choosing a software tool should align with a person’s general approach to modeling and
simulation. Therefore, I briefly introduce my background to give context and perspective to my response to
the posed question. I have been involved with simulation for nearly 50 years — using it to help solve problems
in a variety of industries and teaching numerous simulation courses, both in the U.S. and abroad. Over the
years, I have used numerous simulation software products in industry projects, in support of research, and in
the classroom. I started using FlexSin in 2006 for industry projects and then, a few years later, transitioned my
simulation courses to use FlexSzn. Since then, I have co-authored the textbook Applied Simulation Modeling and
Apnalysis using FlexSim (now 1n its fifth edition) and two primers - one on simulation in general and this one,
which focuses on modeling and analysis using FlexSzz. One of my long-term, foundational professional goals
has been to enhance and increase the application of simulation, both in practice and academia, to support

problem-solving and decision-making,

While many good simulation products are available in the marketplace, I find FlexSim to be the best for my
approach to solving problems and educating others. Hopefully, this essay will articulate why Flex$7» became
my simulation software of choice.

FlexcSim is a modern, comprehensive simulation modeling and analysis environment that supports problem
solving and decision making in industry, as well as supports teaching and research in academia. However, it was
FlexcSim - more than any other software - that made it possible for me to focus on solving industrial problems

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 14 72 AUTODESK

or teaching simulation concepts. It is a software tool that is extremely powerful yet easy to use and transition,
as needed, from small, simple models to larger, more complex ones. This is important in practice for
incremental model building — starting simple and adding complexity as required — as it allows all those involved
in the simulation process to follow and understand the underlying approach. It is especially important in
teaching to have students quickly build simple models that illustrate key concepts and then add the desired
enhancements. Flexsiz makes it easier to concentrate on solving problems or learning simulation concepts
rather than dealing with the idiosyncrasies and learning curve associated with other software.

Being involved in various industries and trying to give my students a basic understanding of the applicability
and power of simulation, I find that FlexS$im can easily model a wide range of operations systems including, but
not limited to, discrete-part and continuous (e.g., oil and gas, food processing) manufacturing, transportation,
logistics, healthcare, mining, construction, business and service processes, etc. FlexSim also offers a variety of
simulation modeling approaches. While the core technology is discrete-event simulation, continuous and hybrid
systems can be modeled through a library of pre-defined yet customizable fluid objects. Agent-based simulation
and Monte Carlo simulation can also be performed within FlexSin.

Standard discrete-event and continuous modeling functionality are implemented through easy-to-use 3D
objects. Most importantly, they can be customized through common and intuitive user interfaces. The objeects’
processing logic, behavior, and appearance are modified through extensive drop-down menu lists and direct
parameter specifications. An intuitive, flowchart-like logic builder is available for defining and refining inter-
object and intra-object relationships and behaviors. While some software claim they do not require the use of
detailed computer code, there are times when it is necessary. Many simulation projects I have been involved
with during my career required incorporating some specialized, more complex logic and behaviors. I found
that, when needed, FlexSin’s process logic builder (Process Flow) and inherent scripting language Flexscript (a
subset of C++) are effective and convenient means for representing complex operations. Numerous
commands and templates, i.e., prebuilt sets of code and logic, are available to facilitate customization and reduce
the amount of programming that is required. FlexSin’s open, object-oriented, hierarchical software architecture
makes it a powerful and effective modeling environment.

FlexSim models are built in a native 3D environment. Their effective animation facilitates model validation,
enhances stakeholder communication and understanding, and increases confidence in modeling and analysis.
From a student perspective, the models look realistic, which provides needed relevance and helps make
simulation exciting. In addition to the objects, I regularly use the many powerful modeling tools that are
available in FlexSim, such as dashboards, time tables for managing work schedules, reliability tables for
managing downtimes, global data tables, global variables, lists, macros, animation editor, video and model fly-
through support, etc.

The simulation of an operation is only as good as the model’s representation of the system and the analyses
that are performed using the model. I believe this is fundamental for students to realize. One of the reasons
that I like FlexSim is that it provides a comprehensive and easy-to-use set of analysis tools, such as an
experimenter for running multiple scenarios and replications simultaneously in a designed experiment (while
taking advantage of the number of cores on your computer), statistical measures of performance, extensive
plotting and charting capabilities, etc.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 1: 72 AUTODESK

Simulation is only one tool for problem-solving; thus, communication with other supporting software is critical.
For example, FlexSim provides a convenient means to transfer model data to and from spreadsheets, databases,
and the popular high-level scripting language Python. FlexSim also offers a seamless interface for OptQuest to
optimize performance by intelligently searching for the best solution, i.e., the best operating conditions for the
system being modeled.

Another very important characteristic of simulation software is the company behind the product. FlexSim
Software Products, Inc. was founded in 1993, and the first version of the FlexS7n software was released in 2003.
Customer support — for both commercial and educational users — is excellent. They genuinely want to help
everyone effectively solve problems through simulation. The company continuously improves its software
through new and improved modeling and analysis capabilities, more effective interfaces and methods, better
graphics, etc. FlexSim strongly supports education through student and education licenses and various learning

materials.

1.4.2 The road to choosing FlexSim

Provided by: ~ Mal Beaverstock, Ph.D.
Manager of Business Simulation, General Mills (retired 2008)

Over a 12-year span, more than $150 million in savings were attributed to simulation at General Mills, Inc.
(GMI). Now retired, I look back and realize that it was achieved through maintaining a problem-solving
approach to simulation and the tool that made it possible—=F/exS.

Early in my career, I lost faith in modeling and simulation. Attempts to use this technology to solve problems
met with frustration and little results. Computing technology in the late 1960’s made detailed mathematical
models expensive, cumbersome, time-consuming, and widely inaccurate. Problems were actually solved sooner

by the involved engineers before a modeling approach could gain any momentum.

The change started in the early 1990’s when a co-worker at International Paper solved a problem by modeling
the mechanics of a machine aided by software that greatly facilitated building differential equations. The speed

and ease of using such a tool re-ignited my interest in modeling and simulation.

While managing a control and simulation group at General Mills in 1995, an Ex#end simulation showed a savings
of over $1M by eliminating a packing line in a new design. That got management’s attention! However, the
work was still slow going. Using simulation software meant spending more time working with their
idiosyncrasies than thinking about the problem that had to be solved.

Despite the drawbacks, successful simulations still helped by increasing the productivity of a complex conveyor
system, resolving design issues when sizing surge and storage tanks, and improving a batch operation to meet
new production levels without any capital expense. However, using simulation remained a specialty for a few

individuals and not a general tool.

A search began for a software tool that could be accepted and used by all levels of individuals interested in
simulation, provide for easy communication of assumptions and results, allow a focus on process dynamics, be

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION] 72 AUTODESK

flexible enough to handle complex functionality and be a fully supported commercial product. Simulations were
developed using a variety of software, including Extend, Witness, ProModel, Arena, and Excel. None matched the

requirements.

In 2002, General Mills acquired Pillsbury, where Taylor ED was used for simulation, and through their contacts,
I learned about FlexSim. This newly-developed software showed great potential. It was based on their
incorporating object-oriented software constructs — an approach I immediately recognized from my work some
years earlier as head of Systems Research at the Foxboro Company. Their use of functional objects combined
with state-of-the-art graphics was exceptional. It was the first time I saw such techniques applied to building a
simulation tool and it set them apart from the rest of the field.

Bill Nordgren, President of FlexSim Software Products, Inc., had a similar vision to mine for a simulation tool.
The resulting symbiotic relationship resulted in a product that met our functional requirements. A graduate
student majoring in art at the University of Minnesota spent a summer creating 3D objects based on actual
pieces of manufacturing equipment as well as objects representing General Mills products. The object interfaces
were modified to reflect GMI terminology and contain design information about equipment, such as standard
speed, costs, and reliability information. Stored in libraries, equipment could be inserted into a simulation model
without any other programming. While looking like a custom tool, the simulation program was actually a library
within standard Flex:Siz and could be changed back with a single click. Since Flex:Sim served as the functional

base, complex logic and dynamic simulations were possible.

As a result of FlexSim, by 2004 all interested individuals, including engineers, managers, and production
personnel on the plant floor, could interact and contribute to the building, running, and analysis of the
simulations that were helping them. Because of the visualization, people could see their equipment making
their products.

The interest in simulation increased exponentially. Simulations were built 30% faster with FlexSim. Capital
projects using simulation came in on time and under budget. FlexSin’s flexibility allowed for simulations to
quickly provide a feasibility estimate for new manufacturing concepts, help in the design of new equipment by
analyzing operator actions, optimize material prep operations, study personnel assignments and requirements,
determine yogurt scheduling approaches, resolve problems in delivery and shipping areas; review scheduling
impacts on entire production lines, and many others. The consistent FlexSim environment made the simulation

effort easier to develop and understand when more complex logic was required.

While the innovative software design, development execution, and tool-like approach to FlexSim were major
factors in my selection, the vision, responsiveness, and commitment of the entire FlexSim staff sealed the deal.

As far as I was concerned, the decision to use FlexSim was a “no-brainer” and proved itself in practice.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 17 72 AUTODESK

PART I - GETTING STARTED WITH FLEXSIM

e Chapter 2 describes FlexSim’s features and capabilities at a very high level as well as licensing and how to
obtain the software.

e Chapter 3 defines general simulation terms and terms that are specific to FlexSim, introduces major parts
of the software, such as the Object Library, Toolbox, and means for analysis, and defines the notation and

formatting used in the primer.
e Chapter 4 explores the FlexS$im modeling environment, including menus, toolbars, modeling workspace,

interfaces, etc.

e Chapter 5 describes in detail how to build the simplest simulation model, a simple queueing system.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 18 72 AUTODESK

o FLEe
0’ ’Q)K solved.

2 GETTING STARTED WITH FLEXSIM SIMULATION SOFTWARE

Chapter 2 describes FlexSim’s features and capabilities at a very high level as well as licensing and how
to obtain the software.

FlexcSim 1s a powerful, yet easy to use, environment for developing and analyzing simulation models of complex

operations systems. Some of its features and capabilities include the following

e Comprehensive libraries of modeling objects and tools

e Modeling directly in 3D

e Complementary means to develop simulation models, such as customization of standard objects via
consistent, intuitive interfaces, developing complex process logic through a flowchart-like logic builder,
and specifying behavior through custom coding with a scripting language that is a subset of C++

e Open, object-oriented, hierarchical architecture

e Links to spreadsheet, database, Python, statistical, optimization, and graphics software

e LExperimenter for designing, executing, and analyzing multiple scenarios and direct connection to OptQuest
for optimization

e General modeling environment to support problem solving and decision making in diverse domains and
applications.

MANUFACTURING MATERIAL HEALTHCARE WAREHOUSING SUPPLY CHAIN
HANDLING

This primer is based on the Student version of FlexSin, which is a limited version of the Enterprise or
Educational versions. The Student version is limited in the number of objects and Process Flow activities that a
model may contain, but has all of the capabilities and feature of the professional version. All of the versions

require a license.

FlexSim Express is available for free download from flexsim.com, but it is primarily for evaluation purposes.
As a result, the number of objects that can be used in a model is very limited, and many of the key features of

FlexSim, such as full customization and the Experimenter, are unavailable.

While FlexSim Software Products, an Autodesk company, provides access to all versions of its software on its
website, flexsim.com, it promotes two versions of FlexS$im at any time - Current and LTS (Long-Term
Support). At the time of writing this primer, the current is version 25.0.2 (release date 2025-01-17), and the
LTS is version 24.0.8 (release date 2025-01_17). Three major releases occur within a calendar year: one at the
beginning of the year (25.0) and two updates, one in the March/April timeframe (25.1) and one in the
July/August timeframe (25.2).

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 19 72 AUTODESK

The current version of the textbook Applied Simulation: Modeling and Analysis Using FlexSim 5 Ed. (2017) is
based on the version 2017.0.13.

This primer is based on the Current version — 2025.0.2, release date 2025-01_17). While many of the basic
operations of the software and user interfaces are the same or very similar, there may be differences with
other versions.

To obtain this version, log into your FlexSim account to obtain the following dashboard. Obtaining an
account is free and only requires some basic information.

Dashboard
@ Welcome -
Sign out

Get started with FlexSim Try, Buy, Renew?

Questions? Need help? Your Local Distributor is:

"

Select Download from “Download the latest version of the software,” which will result in the following
interface, then download the current version.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 20 72 AUTODESK

https://account.flexsim.com/downloads

Downloads

FlexSim 2025

Current
Version 25.0.2
Release Date: 2025-01-17

& Download

installer 687 MB

FlexSim 2024

LTS Long Term Support @
Version 24.0.8
Release Date: 2025-01-17

& Download

installer 678 MB

Other downloads:
Fle D 2. Other downloads:

D Software & M

FlexSim 2025

2o F
% ,

Powerful computer software for modeling,
analyzing, visualizing, and optimizing any imaginable
process.

FlexSim Healthcare 5.3.10

% Experience our problem-solving, money-saving,

stat-crunching, patient-centered healthcare simulation
software.

10

& Compatible with FlexSim 24.2 and ater.
k] A web communication interface for FlexSim that
enables you to run FlexSim models on a web

server and view them through a web browser on a client
device.

FlexSim_25.0.2 x64.msi | 686 MB | msi | 64bit
UserManualinstaller_25.02.msi | 349MB | msi | 64bit

FlexSim_25.0.2 x64_installer.exe | 687MB | installer | 64bit

& Download
installer 368 MB

& Download
installer 1.52 MB

For earlier software versions, click More Versions (located just below the Download buttons. The installers

for each previous version of FlexSim are available for download.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

#2 AUTODESK

3 FUNDAMENTAL CONCEPTS

Chapter 3 defines general simulation terms and those specific to FlexS7z, introduces major parts of
the software, such as the Object Library, Toolbox, and means for analysis, and defines the notation

and formatting used in the primer.

This primer begins with a short introduction to simulation modeling and analysis, an overview of FlexSin/s

general approach to simulation, and the notation and formatting conventions used in this document.

3.1 Simulation modeling and analysis

Simulation is used to analyze and solve problems and support decision-making. It is used to:
¢ Understand a system’s behavior, especially its dynamics

* Analyze and predict a system’s performance

¢ Compare alternatives for improvement

e Make the best decision for change

Simulation is composed of two key parts, modeling and analysis:

e Simulation modeling is a means for representing a system physically and logically to understand its
behavior over space and time and to virtually assess possible consequences of actions.

e Simulation analysis uses a simulation model to experiment with and test ideas and alternatives before
deciding actions and committing resources.

While many things can be simulated, this primer and F/exS$7» focus on the simulation of operations systems—
systems that transform input into output through a set of related activities and processes requiring a variety of
resources, such as equipment, material, people, and information. Transformations may either be tangible
(machining, inspecting, or delivering material in manufacturing) or intangible (e.g., diagnosing or treating
patients in healthcare).

In order to simulate operations systems, three key aspects must be addressed: interactions, variability, and
dynamics, since these are all inherent in operations systems. There are complex relationships among a system’s
resources (material, equipment, people, and information), which interact in numerous and complex ways. In
even the simplest system, there are sources of variability — arrival times and rates, process times, product mix,
downtime, and quality level — to name a few. Some sources of variability are known, such as work schedules
and possibly product mix (at least in the short term). Other types of variability are unknown, such as quality,
process times, and breakdowns. Due to variability, the resource interactions change over time, thus resulting in
the system’s dynamics.

A simulation must represent the basic actions that occur in an operations system, e.g., processing, storing, and
transporting items. The representation must consider physical aspects (e.g., size, distance, speed) and logical
aspects (what, who, when, and where things are done, as well as how much and how long).

Four basic types of simulation are used to model and analyze operations systems: discrete-event simulation,
Monte Carlo simulation, continuous simulation, and agent-based simulation. While all four of these types of
simulation can be done using Flex$7n, the most common, by far, is discrete-event simulation (DES). In DES,

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

the states of a system change at discrete points in time due to events occurring, such as a customer arriving at
a system or the ending of a work shift. A system state is a condition of a system or value of a system variable,

such as whether a resource is busy or idle or how many customers are waiting for a service.

3.2 Simulation using FlexSim

FlexSim is a comprehensive simulation modeling and analysis environment with extensive capabilities. Below
are some, but not all, of its features and components. Most of these will be discussed in later sections of the

primer; this is just an overview. Key terms are highlighted in bolded font.
3.21 Object Library

A library of modeling objects is available to rapidly represent key aspects of operations systems and create
system dynamics. The objects are:
e DPre-built, yet customizable, representations of actions commonly found in operations systems, for example:

o Planned and unplanned delays, such as process times, repair times, and waiting for resources

o Transportation by means of both fixed objects (e.g., conveyors or robots) and mobile objects (e.g.,
operators, fork trucks, cranes, and AGVs)

o Resource availability and reliability

o Combining and separating items

o

e Dragged from a library, dropped into a 3D model view, and connected to create a representation of the
operation of a system.

e Customized to represent the characteristics of the system being studied by changing an object’s properties
of parameters.

o The extensive set of object properties considers physical aspects (size, location, capacity, speed, etc.)
and logical aspects (processing and routing rules, sequence of activities, availability, etc.), both of which
cither depend upon or influence a system's current state.

o In addition to the many standard properties available in the objects, user-defined properties (called
labels) can be defined, used, and updated anywhere and at any time during a simulation.

o Each object has a consistent and friendly user interface. Object properties are conveniently grouped
by panes on the object’s property window. Many panes are the same across all types of objects, thus
making learning the software much easier. Properties are specified through direct value entry and drop-
down menu options on its pane.

o Properties may also be customized and controlled through FlexSin/s built-in logic builder,
ProcessFlow, or by writing computer code using FlexS$iz’s built-in scripting language, FlexScript, a
subset of C++.

e Inherently 3D; thus, simulation models are created and run in a three-dimensional environment.

o Any object’s 3D shape can easily be customized. For example, 3D shapes created in AC3D, 3ds Max,
SketchUp, etc., can be directly imported into FlexSim, as can objects from the extensive, online, open-
source 3D Warehouse.

o The software includes capabilities to “fly through” a model and to create videos of a model in action
are built into the software.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

3.2.2 Toolbox

The Toolbox is a library of tools that supports modeling building through, but not limited to:

e Global Tables store data and casily provide input to a model or obtain output from a model.

e Lists dynamically store and process information during a simulation.

e Time Tables specify deterministic tesource availability, such as shift schedules, break times, periodic
inspections, etc.

e MTBF MTTR provides means to specify downtime by:
o Randomly making resources unavailable for a duration that is also oftentimes a random variable
o Basing downtime on model states (e.g., processing and traveling) rather than clock time
o Managing multiple or competing downtimes on the same object

e Groups denote objects that are similar or are acted upon in a similar manner.

e Process Flow builds complex inter-object and intra-object logic.

e Dashboards display model dynamics through charts, e.g., pie, histogram, and time series.

e Excel Import/Export provides direct links between FlexS7m and MSExcel for inputting and outputting
model data.

e Other types of tools include creating special events and actions, tracking and collecting information on a
model variable, creating global variables and macros, developing a video of a model running, interacting
with the popular scripting language Pyzhon, etc.

3.2.3 Analysis

Simulation models are built to perform analyses. FlexS$7» provides many tools for analytics, including:
e Information tracking
o Automatically tracking many common measures of performance, such as throughput, content,
utilization, etc.
o Defining and tracking custom, system-specific measures
o Charting to observe system performance on a dashboard as a simulation runs or to export results for
reports and presentations
e Experimentation and optimization
o Easy-to-use, built-in Experimenter for creating and comparing changes to sets of model parameters
(scenarios), running multiple replications of a model, providing confidence interval estimates and
other types of statistics, etc.
o Direct interface to a leading optimization engine, OptQuest, to effectively search for the “best” set of
model parameters to meet specified system objectives
e Export to analysis software — data can be exported to spreadsheets, databases, and graphing and special
analysis software for further investigation.
e Data import — simulation models in F/exSi7 can be driven from:
o Data stored in spreadsheets and databases
o Data represented as an empirical distribution or fit to a probability distribution using FlexSin/’s curve-
titting tool.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 24 72 AUTODESK

All model data are stored in an open, accessible hierarchical data structure referred to as the Tree.

Many of these features mentioned here will at least be introduced in this primer. However, a full discussion of
many of them is beyond the scope of this introductory document.

The basic operation of FlexSim involves the creation and execution of events that are based on the logic
specified in a model. The events generate actions and activities that occur over time. As a result of the events
occurring and/or the current state of one or more objects, items move ot flow from object to object. In Flex:Sin,
the items that flow through a model are called flow items or just items for short. Items typically move between
resources, either fixed resources (e.g., machines, conveyors, and storage areas) or mobile resources (e.g.,
operators, trucks, and AGVs). Items move into and out of objects via ports and contain user-defined
characteristics called labels. Mobile resources in FlexSim are called task executers since they execute a

sequence of tasks such as travel, load, travel, and unload.

Throughout a simulation, information on a system's conditions (or states) is gathered, summarized, and used
for analysis. Typically, the summary information, such as average state values (average utilization, average

number waiting for service, etc.), are used to compare the performance of alternative systems.

3.3 Notation and formatting conventions

To enhance the readability of this primer, certain formatting conventions and notation are used throughout the
document.

As introduced above, FlexSim includes many objects and tools to facilitate simulation model building and
analysis. For readability, the names of these entities are capitalized, e.g., objects such as Processor and Source,
and tools such as Dashboard and Time Table.

A significant part of modeling is customizing general objects, such as a Source or a Processor, to represent the
system being considered. In FlexSim, this involves specifying property values for objects through a user interface
that employs drop-down menus, picklists, text boxes to directly specifying values, etc. Therefore, for readability,

the following are the conventions used to reference parts of the software.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 28 72 AUTODESK

Conventions for referencing parts of the software
* Names of windows or interfaces are capitalized and 1n bold font, e.g., Properties, Library, Toolbox.

* Names of the window panes are capitalized and in bold italics font, c.g,, Fixed Resources, View
Settings, Visuals.

* Names of Menus and Toolbars are capitalized and in bold font, c.g, Main Menu and Main
Toolbar.

* Names of Menu and Tool options are capitalized and bold italics font, e.g., File, Save 3D, and
Dashboards.

* Names of objects are capitalized and in bold font, e.g., Processor, Queue, Source.

* Names of Process Flow activities are capitalized and in bold font, e.g, Event-Triggered Source,
Assign Labels, Decide, Delay.

* Names of the properties or parameters of objects and Process Flow activities are in bold italics font,
c.g,, Process Time, Send To Port, and OnEntry.

* The values of the properties, e.g. 1000.0, First Avaslable, items. Type, arc italicized.

* Sclection options within a drop-down menu, such as Statistical Distribution, First Available, and Data >
Set Label, are italicized.

* Instructions to the reader for carrying out sperific modeling actions are highlighted by separating
- »
them from the text and preceding them by the ™ symbol.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

4 FLEXSIM’S MODELING ENVIRONMENT

Chapter 4 explores the FlexSim modeling environment, including menus, toolbars, modeling

workspace, interfaces, etc.

When FlexSim is launched, by double-clicking the FlexS7m icon, the first choice is the desired modeling
environment, either Classic or Healthcare, as shown below. This primer only addresses the Classic

environment.

Select your initial FlexSim experience

Choose a FiexSim esvronment optenized far the way you work

Classic FlexSin's Start Page is shown below. The main interface is in the upper left-hand portion of the page,
where buttons are provided for starting a new model, opening an existing model, setting preferences, checking
licensing information, and accessing the User Manual. Below the buttons are a list of recently-accessed model
files. A model file can be launched by clicking on its name in the list.

Autodesk
E Tutorials Interoperability
s Moedule

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION #2 AUTODESK

The upper right-hand portion of the interface provides detailed information on the software version.

The tiled images in the main portion of the interface link to FlexSim’s website for more information on the
software. These links will not be displayed if not connected to the Internet.

Once a model has been created, it can be accessed directly by double-clicking on the model file without going
through the Start Page.

The file extension for FlexSim models is fsm. FlexSim automatically creates a backup of the current model
through an autosave feature. The default time between saves is 10 minutes, which can be changed through
Global Preferences. The autosaved file is named <your_filename>_autosave.fsm. Note that the model is only
saved if it is not running; i.e., if a scheduled save occurs when a model is running, then the save does not occur.

When starting a new model, the first

. Model 5
information that is required is the model’s units 29 8 &
of measure. This is provided through the Model |™="* Tine Lo (=
. . . Length Units Lengsth Units fpicrosecnons
Units window, as shown in the figures to the
Fluid Units Fluid Units
right. FlexSim 1s unitless, i.e., simulations are | g strttime Vede StartTne s
conducted using general time units and distance ‘
units. Therefore, it is up to the modeler to l’ '
specify the units appropriate for the system || poight | Height S A Time 1.1
being modeled. As shown in the second figure 18 18 I EN it
to the right, different model units are available
through a drop-down menu for each unit of
measure. Note that the default units are metric;
. [Show this window for each new mode! [shaw this windaw for each new madel
ie., length (distance) is in meters, time is in

seconds, and fluid (volume) is in liters.

This first step involves a very important decision since the specified units cannot be easily changed in a
FlexSim model once they are initially set. However, there is a Measure/Convert tool within FlexSzm to help
with conversions.

Model Start Time can be changed at any time, but in most cases, its value can be ignored when starting a
model.

The following figure shows the basic modeling environment and user interfaces in FlexS$7z. The numbers refer
to the sub-sections below, where each interface is briefly described.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

@
CIYTTEY
'

c

o
b o
4.1 Main Menu and Main Toolbar
FlexcSim’s Main Menu and Main Toolbar are shown below.
File Edit lev Statistics Debug Help
&= d 2 Y ? ~vE &~ #% 3D {{ Tools :E' FlowItem Bin | 2&] Excel T:gTree B script # Backgrounds ﬂ“ Dashboards +3 Process Flow >§ Workspaces 2]

The Main Menu functions the same way as in most Windows applications. The following defines some of the
more commonly used options and those that may interest new users.

e File options are used to create new models, open existing models, save a model, save a model under a
different name, and set Global Preferences for the FlexSim environment, including graphics card
compatibility and customizing the toolbar.

e Edit options allow actions to be undone, as well as view and change model settings, etc.

e View is used to open various interface windows.

e Execute contains model-run controls like those in the Main Toolbar.

e Statistics is primarily used to launch the Experimenter.

e Debug is for advanced users and is not discussed here).

e Help provides access to the User Mannal and license information.

The Main Toolbar is located below the Main Menu. It is composed of a set of icons that provide shortcuts
to basic FlexSim operations and capabilities, such as saving a model, connecting objects in a model, opening

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 29 72 AUTODESK

additional 3D views, accessing the Toolbox, linking to MS Exvel, creating or accessing a Dashboard, creating
or accessing Process Flow logic, etc.

4.2 Model Execution Toolbar

As the name indicates, the controls on this toolbar command a model’s execution. As shown below, located
below the Main Toolbar, it contains the following actions.

IiReset P Run [l Stop D FastForward DDl Skip DI Step | RunTime: |8:00:00 AM 8/24/2024 [0.00] v| Runspeed: 400 |+

i

e Reset suspends model execution, removes all items from a model, resets all statistics, and sets the simulation
clock back to 0.

e Run starts a model's execution either after a Reset or Stop.
e Stop pauses a model run; the run can be continued by pressing the Run button.
e Fast Forward moves a model forward to the next stop time.

e Skip advances a model to the next event’s time. Since multiple events may execute at one time, this
processes all events at that time.

e Step advances a model one event at a time.

Run Time shows the current simulation clock time, and its drop-down menu is used to set the planned stop
time and any intermediate stop times.

There is no default planned stop time, so a model will run indefinitely unless suspended through Stop or
Reset. The duration of a simulation run is in sizulated time, not real time. As noted eatlier, time in FlexSinz is
unitless; it is given context through the user’s specification of time units (e.g., seconds, minutes, days) when a
model is first created via the Model Units window.

If a user specifies the model units as seconds, then a Run Time of 10,000 is 10,000 seconds of simulated
time (about 2.8 hours). Of course, it will take less than 10,000 seconds to run because simulations can run
much faster than in real time. The model execution time depends on the Run Speed.

Run Speed is like FlexSins's “gas pedal” — it controls how fast a simulation runs. It can be set with the slider bar
or via its drop-down menu. If a model’s units are seconds, then a speed of 1.0 means the simulation is running
in real time, i.e., one second of simulation time is one second of real time. Similarly, if the speed is set to 100,
the simulation is running 100 times faster than in real-time. Therefore, if a model’s Run Time is 100,000 seconds
(about 28 hours) and Run Speed is set to 100, then the 100,000-second (28-hour) simulation will take 1,000
seconds (about 17 minutes) to run. The Maximum option in the Run Speed drop-down menu is the fastest a
simulation will run based on the host computer’s capability. A simulation’s speed can be adjusted as it runs to
move quickly ahead in time to get to an interesting point in the model execution or slow down to watch a
certain behavior carefully.

The Experimenter provides another means to run simulation models, which is discussed later in the primer.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3C 72 AUTODESK

4.3 3D model view window, modeling surface, and mouse operations

The model view window is FlexSin’s primary interface since this is where models are constructed in 3D. The
modeling surface is a gridded infinite plane in the x and y directions and located at 0 in the z-direction. The x
direction is to the left and right, the y direction is forward and backward, and the z direction is up and down.
The black cross on the grid denotes the origin, where x=0, y=0, and z=0.

The grid units reflect the length units defined in the Model Units window when starting a new model.

As discussed in the next section, Flex:Sim objects are dragged into the model view and placed on the modeling

surface. By default, they are placed on the surface, but they can be located above or below it based on the z-
location parameter.

A mouse is used to navigate in the 3D model view. As shown in the figure .
to the right, the mouse movements are as follows:

e The left mouse button moves the view to the left and right and
forward and backward. m\ﬁ . @
D¢

e The right mouse button rotates the view. W e

e Using both mouse buttons or the scroll wheel zooms the view
in and out. - @ or @

To reset the view of a model so that it is centered at the origin and is in a flat, two-dimensional plane:

» Right-click anywhere on the modeling surface, then select I7ew >, and then Reset 1iew.
This two-dimensional view is helpful when placing objects in specific locations on the grid, connecting
objects, and when a model appears lost somewhere in 3D space.

The modeling surface provides a 3D view of a model and is a tabbed interface in the modeling environment.
As will be seen later, other things, such as dashboards and tables, can also be a tabbed part of the modeling
environment. The tabbed views can be removed by clicking on the x button in the top-right portion of the
view. In the case of the Model view, it can be reopened by pressing the 3D button on the Main Toolbar.
Therefore, if you close the Model view, you only lose the view of the model, not the model itselfl Also, as discussed later,
model views can be saved so that the saved view can be quickly recalled at any time.

Multiple model views can be created to view a model from various perspectives. Again, views are created
via the 3D button on the Main Toolbar. However, having too many views open can slow down model
execution since the graphics on all of the views must be updated as a model runs.

Another approach for having multiple model views is via the Views pane in the Properties window.

This will be discussed in a later portion of the primer. Again, closing views do not affect the model. Even
if all views are closed, the 3D model is still there; it is just not displayed.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

4.4 Object Library and Toolbox

Two of the main modeling resources in FlexSim, the Object Library and the Toolbox are shown in the figure
below.

I Uoeary 4 Toolbox

4 |
= Fixed Resources ~
e S— .
$oes Object Library
oy oceas R
’-“." | A* Hawngaton
W Corbner TP
Carrier
® seoe TR
o hsrooessoe poo Preterred Poth
b Kinsciddl v Tncge
| Task Executers Mo
wo Matlaney Path
Dspaide 2d (LK toeary | Tookox
b Jiomnd A B v Toolbox B |)
Tperator
Y r“ o (=] | AGY 2 Agenl Spviven y
P Transoonsr .x» SaightFaty #) Coce Pubile
3 Y, Surves Sath Connectwry
P < ¢ Dachboerd
Ceatra Point
% e 4 DownBehavce
Contro Ares -
o Nowitem
1615 C
=) Teavel Nelworks \ M Gkl Lst
L vebeodgide TR = 1 Gebal Tekle
@ 1eaffctonto | Phond = i Geoup
-] Conveyors @ Tudros @ MIBEMIR
O & ik Meceing Logic
Oy ‘-I Fhs dCencrator " Objoct Proparty Tible
7 & PudTarmicate +3 Process Clos
< Sedsor Pont 2 b rcer & St Tt
B staton T~ FudBionder BN Seabstics
I rudsoltrer i
¥ ot Eye - Fudiplte j Tekle Valcistion
& voime ~ P N
2 Ture Dbk
Merge Conlioiur AR Fudrrozessed isusl
Visusl
| Warehousing 8 enTorud .
2k A & HddTaliwn =
fhoor Starage " FudCcmyor
«.. Pant ot Laces J =) People
vl Eeater -
A L Swart
A 2z &, ranepaet O
Zave 8 Suarnl o
iy B utiozasa -
e ToevNnas K
4o Watrg Une
& Ehrvuler Bk
| Lis S
ey i Freo alw
v o -
=l AY Ravigation
= AGY
- G615
+) Flud
+| People v

As mentioned earlier, models are created in 3D by dragging FlexSim objects from the Object Library to the
Model View window and dropping them onto the modeling surface in the 3D space. The Object Library is
also called the Drag-Drop Library in the View drop-down on the Main Menu. The library groups objects by

major categories, such as Fixed Resources, Task Executers, Conveyors, etc. The library shown in the left portion

of the figure above is the default view showing all object categories. The last category panes are expanded to
the right, showing all the available objects in these categories.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3. 72 AUTODESK

Other types of object libraries can be used in a model, such as special-purpose and user-developed libraries of
custom objects. However, this more advanced feature is only mentioned here to introduce a Flex:Sim capability.

The tab next to the Object Library is the tool library, referred to as the Toolbox. It provides access to a
variety of modeling aids, such as data tables, timetables, dashboards, etc. Two versions of the Toolbox are
shown in the figure above - the default list of tools used in a new model, and to its right, all of the types of

tools that are available, such as Agent Systems, Color Palettes, etc. This list is accessed through the button.
Many of these will be discussed throughout the primer.

The various modeling objects and tools are introduced as the modeling example is built. While F/ex:$77 contains
a wide range of objects and tools to facilitate modeling diverse and complex systems, this primer only considers
a subset of the capabilities. These key aspects are the ones needed to get started with FlexSinm.

4.5 Object interface

As described eatlier, at least for basic models, a significant part of model building is dragging and dropping pre-
built 3D objects onto the modeling surface. The objects are selected, arranged, and connected to represent the

behavior of the simulated system.

Each object represents a different functionality in operations systems and contains numerous properties
available to customize the object’s behavior during a simulation. The properties are grouped by panes on the
object’s user interface. Many of the panes are the same across all objects since all objects can be customized by
size and shape, means for routing items to and from the object, defining custom attributes or characteristics
(called labels in FlexSim), defining particular actions that occur within an object, etc. Having these common
panes greatly facilitates learning and using the software. Each object has one or more panes containing
properties specific to its functionality.

Using the Processor object as an example, the following figure illustrates some of the common aspects of 3D
object interfaces. For the Processor, there is one unique property pane named Processor, and the common
panes include Statistics, Template Visuals, Labels, Output, Input, Ports, and Triggers. The Processor object
has numerous properties, such as Max Content, Setup Time, and Process Time. The properties’ corresponding
values are in the text boxes; for the properties above, the values are 7, 0, and 10, respectively. The values of the
properties can be customized by the user/modeler.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

v X sl ®
-] Statistics 71
) Template % ?
=
I'he yellow frame around the | Vil =7
Processor indicates it is “Selecred.” O ST ——r——r -2
19 |~ »
R . % Properties
|3 oo] “
40 HEC) = FE =
o s
o Procesuel |1+ s @ ~{ inheds 227
hrond 2 daxXt i _
2l Teweinte =7 Propertics
=) Visuals - 2 Jautzratoyy Sasat g M3
1 bk 7 a1k 3 =| Precessor 2.4 4
Processor | Procesans k) r Comrkiars | B e diore
Yaax Cuntanil \ e Avmncts Coova Tann Te
St e nn v A
: rnv A L Use Ozeratarte) Propertics
Propertics L use Ozerateriz) Pen——
1 v A
o o /
wv ¥ [L Opcratee(s)
L Uz Coeratons) Sare % 2ol -] Dutpwt x 7
-} Output] e ToFos
) npat %2 Eistintsie TR/ Properties
-] Vorts 7 Tk trarcgeces
=l Trpoers 7 =1 Input X9
) Ports 2
This Window opens by i L/
double- clicking the object. R
The Properties Window
opens when an object 1s
“Selected” (clicked on)

The Properties window can be accessed in two ways. The first way is to "select” the object by clicking it once
with the left mouse button. This results in the object’s properties being displayed in the far right window of the
environment, i.e., the Properties Window. If an object is selected, it will be outlined with a yellow box. The
second way is to double-click the object. In this case, the Properties window will display next to the object.

The tigure below shows the buttons Flex:Sizz uses on its interfaces to help users provide property values. It also
briefly defines the buttons’ functions. The functions are grouped by those commonly used, especially by new
users, and other buttons that are used to model more complex operations systems.

Property values can be set by many means, such as specifying a numeric constant, sampling from a probability
distribution, looking up a value in a table, and following logic based on one or more states of the system.
Specifying property values may involve providing parameters, such as the mean and standard deviation, when
the property value is defined as a Normal probability distribution.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 34 72 AUTODESK

Functions of commonly-used interface buttons

¢ Adds an item to a menu.

)g Deletes an item from a menu.

Opens a drop-down menu with choices for specifying the property’s value.

The eyedrop-looking tool, called the “Sampler” is a convenient means to
) P £ > P
select other objects.

Opens the Users Manual to where the property is discussed, ie.,
context-sensitive help.

)

, Opens the pane in a separate window.

‘ Indicates to enter text in the box.

Functions of asher} he intest

o Opens the Users Manual to the Getting Started section.

tg Opens a view of the object in FexSin's hierarchical Tree structure.

Opens the Code Editor to write custom FlexScript code to
define custom logic.

:E Compares properties to other objects.

Changes an object’s properties by referencing another object.

In addition to object properties, the Properties window is also used to change the properties of the 3D view.
The view properties are available by clicking anywhere on the modeling surface. For example, multiple views
of a model (e.g., an overview of the entire model or a closeup of an object or set of objects) can be defined in
the Views pane. Another example is in the View Settings pane, which is used to toggle between the default
Working Mode and Presentation Mode. The former is used for model building, and the latter hides the object-to-
object connections, on-object statistics, etc., to make the model cleaner for others to view.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

4.6 Help

FlexcSim offers several ways to obtain clarifications and more details while using the software.

4.6.1 User Manual

One is via the User Manual, the first page shown in the figure below, along with its high-level table of contents.
The manual is a key reference, but also contains step-by-step Tutorials, which are helpful for new users. It also

contains a text search capability to find items of interest.

Introduction

Welcome to FlexSim

Quick Start

Activating and Managing Your License

Customer Support

Training Classes
Tutorials

Introduction to Tutorials

FlexSim Basics Tutorials

FlexSim Healthcare Tutorial

Task Logic Tutorials

Process Flow Tutorials

Additional Tools Tutorials
The FlexSim User Interface
Simulation Best Practices
Using 3D Objects
Connecting 3D Object Flows
Building the Model's Logic
Working With Task Executers
Getting Data from Your Model
Using FlexSim Healthcare
Reference

Modules

WELCOME TO FLEXSIM

FlexSim is 3D simulation software that models, simulates, predicts, and visualizes business
systems in a variety of industries: manufacturing, material handling, healthcare, warehousing,
mining, logistics, and more. It is both powerful and user-friendly.

Make Better Decisions

FlexSim can help your company make more informed decisions. You can use FlexSim to:

Visualize--risk free--the results of proposed changes to optimize the flow of products,
staffing, resource utilization, floor plan design, and almost any other aspect of the system
Optimize your system before you implement changes in real life, saving your company time

and money
Study alternative investment ideas and cost reduction plans

Reduce Costs

Many companies have used FlexSim successfully to:

« Test methods for allocating resources more efficiently

« Reduce waiting time and queue sizes

Minimize the negative effects of breakdowns

Establish optimum batch sizes and part sequencing

Study the effect of setup times and tool changeovers

Optimize prioritization and dispatching logic for goods and services

Improve Communication

FlexSim can become an effective communication tool when you need to:

« Demonstrate new proposed business system changes to stakeholders
« Train employees in overall system behavior and job-related performance

The manual can be accessed through several means in the software.

2
e The button opens the User Manual at the location in the manual where the specific item in question

is discussed, and the other button opens the manual in the Getting Started section.

e Another option is via the Main Menu and select the Help option.

e The manual can be accessed outside of the software through FlexSim’s website under the Resources menu.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

4.6.2 Online help

Another source of help is the online site referred to as “Answers.” It is a part of FlexSim’s website and can be

accessed under the Services menu or directly at https://answers.flexsim.com/index.html . As shown in the

snapshot below, the site contains several helpful tools for obtaining help.

e Dosts is a list of user questions and answers by FlexSim’s support team. It is a chronological list of posts,
with the most recent at the top.

e Search is a means for users to enter the keywords of their question to see if it has already been answered.
At least at the beginner’s stage, the question is usually addressed in the User Manual or through a post on
this site.

e Things to Know — provides guidance on using the site effectively. All new users should review the first
item, Best Practice for Using the Forum, before using the site.

e Topics, labeled Spaces on the site, groups the posts into main categories to help focus the question. The
default Space on the site is Soffware and Sinmulation Questions.

e DPopular Topics, as the name suggests, provides links to the most popular topics being addressed on the

site.
Search
FLFLexSan / .-
I 3 M
1 Paashe €Uty 3o - e s
: Things to Know
o >
s Topics
; A How 13 Bvars You Recwt ou Tirwly
o haod 32 0 ikt Lt 1L GF iatn o odinie o aait ' ey > PACE:
Posts T -
e - (i oy v ’ ‘ Software & Simutation Questions
L
Accounts & Licensing
Qs Frw i o - Development f
t
_— oot o4 Lo B . aibten 3 . Bug Reports !
Genera! Discussian
Py v
Learning Resources
=i e !
Application Maodels
Popular Topics
s P Concepts and Tasks
Getting Started l

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 37 72 AUTODESK

https://answers.flexsim.com/index.html

5 BUILDING THE SIMPLEST SIMULATION MODEL

‘ Chapter 5 describes in detail how to build the simplest simulation model, a simple queueing system.

Now that FlexSin’s basic modeling and analysis environment has been defined, let’s build a model, albeit the
simplest model! This model introduces the basic 3D modeling objects in Flex:Sin in terms of their functionality,

structure, and properties and obtains basic output from the simulation.
Once some fundamental information is introduced, the primer provides a step-by-step guide to customizing

the objects to represent a more complex system and introduce more of FlexSin’s functionality and capability.

Part of that system will produce containers made on “finishing” machines.

In the primer, the » symbol is used to highlight the steps the reader should take to build, run, and analyze a

model.

To start a new model:

» Double-click the Flexsim program file or shortcut &8 and select "New Model" from the Start Page.

For this case, use the default units, except

» Set the time units to minutes; i.e., the model units should be meters, minutes, | """ &
and liters. As discussed eatlier, change the Model Units window as shown in | ™™ e T -
. Length Units il 4
the figure to the right. i Seconds

Model Start Time

[/ Show this window for each new model

Start with the most simple model.

» Drag the following objects from the Object
Library to the 3D modeling view: Source,

Queue, Processor, and Sink. The objects can s£| - + é Sinkt

be located anywhere but arranged similarly to Broceasat

the figure to the right.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

These objects represent the first part of the production process, which later will be referred to as the finishing

operation, and provide the basic functionality for the simulation model.

e The Source generates flow items, or for brevity, are referred to as items. When the object is customized to
reflect our example, the Source will generate containers.

e The Processor represents the finishing operation in our example. By default, a Processor can only process
one item at a time, but this property can be changed if needed.

e The Queue is used to retain items that have arrived but cannot access the finishing machine because it is
busy.

e The Sink represents the next process, which is not modeled at this time. In our forthcoming example,
items will move to a packing area, but that will be modeled later — we are starting small and simple.

While the four objects define the model’s functional parts, the model is not yet complete - the relationship
among the objects still must be defined. In this simple case, the objects are related by the sequential flow of the
items between the objects. The item flow is defined by connecting the objects, and as with most aspects of
modeling, there are several ways to do this. In Flex:Siz, there are several types of connections between objects;

the item flow connection is referred to as an A-connection.

One approach for connecting objects for item flow, an A-connect, is to follow the sequence:
e DPress the A key (notice the cursor changes from an arrow to links in a chain).

e Keeping the A-key pressed, click on the “from” object, where the flow item comes from; when doing so,
the object becomes highlighted with a yellow box.

e Keeping the A-key pressed, drag toward the “to” object, where the flow item is going (notice a yellow line
emanating from the highlighted object).

e C(lick on the “to” object.

e Release the A key.

An A-connect results in the two objects being connected with a thin

Toput port
black line as shown in the figure to the right. Also, two small red Outpat port

triangles appear on the edge of the two objects. The one on the right- Bl
o

hand side of the Source is its output port, from where items leave the ==t

object. The one on the left-hand side of the Queue is its input port,

where items enter the object. Every A-connect automatically creates

two ports — an output port on the “from” object and an input port on the “to” object.

Be careful with the direction of the object connections since they affect the flow direction. The first object
selected is the object from which items flow, and the second object selected is where items flow to. Of course,
this can be checked by looking at the port connections, as shown in the figure above.

If a connection is to be removed, follow the same steps as defined above for the A-connection, but hold down
the Q key instead of the A key. Notice the cursor changes from an arrow to links in a chain with one link
broken.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

An alternative connection approach is to use the Connect

- 9) -

e < 8 Vig cecule Ehehics Uebug RHelp

4 y) - Qv' v v ad =3 D
icon, as shown in the red box in the figure to the right. A sfee > Se - - B e
With this method, the A key is not held down, and objects are just clicked in the order that they need to be

Objects (A) icon on the main toolbar next to the arrow

connected. Once all connections have been made, press the ESC key on your keyboard to return to Standard
Mode, where the cursor appears as an arrow and not a chain. Similarly, the Disconnect Objects (Q) icon can
disconnect objects.

A third way to connect objects is to use the orb
surrounding an object when it is selected. As shown in el U R
the figure to the right, to connect the selected object to :
another object, select the small white triangle on the edge k\ = -",)
of the orb, shown in the red box in the figure. Then, drag “_ Sourcel
. o ~-Quitpits-0

the connector to the object to be connected until it is Blocked: 0.0% e
selected, i.e., highlighted by a yellow box. Again, an T
output port is created on the from object, and an input
port is created on the to object.
» Connect the objects in the manner

shown in the figure shown to the sﬁ

right using any of the three methods oapLe o Queued © - (S

described above. Sl + Quput &

“%Processing: 0.0

Note that a few statistics are shown below the objects in the figure above. The default option in Flex:Sim is to
show only the object’s name.

» To display the name and a few basic statistics, click anywhere on the | #wei=

modeling surface to obtain the Properties window shown in the figure to = r ’
the right. Open the View Style pane and, as highlighted by the red box, use
the dropdown menu to change the Name Style property from Show Nawmses
to Show Names and Stats. Notice that a third option is also available, Show | ——— .
Nothing, i.e., display no information about the objects. = Ve settiogs :
Viorhing Madc
o7 Perspactive Prajection L] 45t Person
The format of the information displayed for each object is a global property Z:m.\-,-,l"..inm b
that pertains to all objects. The statistics displayed for each object are the | Sio o st wes
FlexcSim defaults, but as with most things in Flex:Sim, they can be customized. :""’ e PR Ll
The final task is to run the simulation. In this case, we’ll run the model for 40 Moo vl ?

. Narre Style
hours of simulation time. Since the model units are in minutes, the stop time | _

is specified in minutes, i.e., 2400 minutes (40 hours * 60 minutes/hout). This | s
is set in the Model Execution Toolbar.

"o
Soorectons

Sdlns

Yz

Tomrecrr R | 0.25 v

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 40 72 AUTODESK

» Use the Run Time dropdown menu, as indicated by the red arrow in the figure below; note that it is just to
the left of the Run Speed property. Change the Stop Time value to 2400. Once this change is made, the Run
Time display will show 0.00 # 2400.00.

SnTew 000 W M000

» Also, on the Run Time dropdown menu, change the Display Mode to Minutes.

Now, consider how fast the model will run, which is controlled by the Run Speed, also on the Model

Execution Toolbar. Since the model units are minutes and if the run speed is set to 1.0, the simulation will

run one minute (60 seconds) of simulated time in one second. If the model units were seconds, then 1.0 would

mean 1 second of simulated time would take about 1 second of real time, or basically, it would run at real-time

speed. One of the benefits of simulation is being able to speed up (or slow down) time.

» Select the Run Speed dropdown menu as indicated by the red arrow in the figure below. In this case, change

the Run Speed, as shown in the figure below, to 60 in the Custom dialogue box and press the Set button.
Thus, the simulation will run 3,600 times (60*60) faster than real time, or 40 hours of simulated time should

take about 40 seconds of real time.

Pran Spod: 3

= X Progarba

=1 Views

+
0 7]

{ Run Goeas

O L0

() Naodrun

® cuzen [T
Dieplsy Mode

Sk (Nowes J Res Zecon:

» Now, press the Reset and Run buttons on the Model Execution Toolbar.

Once the run is complete, it should look similar to the following figure. Items (boxes) should move across the

object named Processorl and accumulate in the object Queuel.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

m v X Properties X
a | Queue1 ‘ T:g (7]
-] Statistics 7 ?
State ‘ releasing ‘ #
Throughput <
Input Output i
. 222.00 [209.00 \
Content 2
Sourcel Curr Min Max Avg
Output: 222 TR [1200 oo [1400 |27
Blocked: 0.0% (ﬁ:?ﬁﬁrﬁ‘s Input: 208 Staytime, » -
Processor1 ¥ 5 g
MaxCoptent: 14 Output: 208 Min Max Avg
AvgStayume: 27.7 %idle: 13.3 0.00 189.11 ‘ 27.65 \
%Processing: 86.7 &) Template Help 47 2
= Visuals O ?

Congratulations, you've built your first FlexSim model!
Hopefully, this will be the first of many helpful models for improving system performance.

» When you select the Queuel object, its statistics are displayed in the Properties window, as shown in the

tigure above.

A few things to note in the figure above about the model's state at the end of the 40-hour run.

e According to the value of the % Processing statistic shown beneath the object, Processorl was busy 86.7%
of the time over 40 hours.

e Over the 40 hours, 222 items entered the model through the Sourcel object, as per its Quput statistic,
and 208 items left through Sinkl, as per that object’s Input statistic.

e At the end of the run, the number of items awaiting processing is 73, as per the CurContent property for
Queuel. Similarly, the maximum number of items waiting at any time since the simulation began is 74
(MaxContent). The average time an item spent waiting is 27.7 minutes (AvgStaytime).

This may or may not be an acceptable performance; it depends on the system. In a human-based
system, waiting nearly a half hour for 10 minutes of service may not be acceptable. However, the wait time

may be acceptable in a manufacturing or logistics system.

This model is running with all default parameters. While the basic flow logic is correct, the model does not use
data that represents characteristics of the example system, such as inter-arrival times and process times. The

next section defines the primer’s example and begins the customization process.
= To save the current model, use the Save option in the File menu. You can use whatever file naming
=] convention you prefer, e.g., MyFirstModel. Flex:Siz models have the filename extension .fsm.
customized beginning in the next section. Again, you can use any file name, but in the primer, the next model

gn Use the Save Model As option in the File menu to make a copy of the existing model so that it can be
H

is referred to as Primer_1.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 42 72 AUTODESK

The following are a few tips for managing simulation models.

It is good practice to save a model frequently and as a new version, i.e., with a new name, whenever
significant changes are to be made. This permits a rollback to a model that has been tested and works as
desired if a mistake is made while making the change or if the change does not provide the desired result.

If a mistake is made in a model during the model-building process, the action can be undone by using the
Undo command located under Edit in the Main menu.

FlexSim automatically saves a model in a separate file every 10 minutes. The default time can be changed on the
Environment tab of the Global Preferences, located in the File menu. The backup file name is the current file
name with _autosave appended, e.g., Primer_1_autosave.fsm.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 4: 72 AUTODESK

PART II - MODELING THE FINISHING AREA

The modeling of the primer example begins by defining the system that the model will represent. It then
describes the development of a simulation model of the first part of the production system, the Finishing Area.

e Chapter 6 defines the system that is modeled throughout the primer. It also describes the modeling
approach that is used.

e Chapter 7 creates the initial model of the Finishing Area and introduces FlexSin’s basic Fixed Resource
objects.

e Chapter 8 describes basic object statistics and creates a dashboard with time series and histogram plots of
measures of performance for the Finishing Area.

e Chapter 9 introduces mobile resources, referred to as Task Executers in FlexSim, and adds a Finishing
Operator to the model.

e Chapter 10 examines the Processor's operation, which is one of the basic 3D objects. It is meant to help
the reader better understand what is happening behind the scenes in the basic 3D objects. Thus, this chapter
does not add features and capabilities to the primer model.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 44 72 AUTODESK

6 THE EXAMPLE MODEL FOR THIS PRIMER

Chapter 6 defines the system that is modeled throughout the primer. It also describes the modeling

approach that is used.

This primer introduces FlexSin/'s various features and capabilities using a single model and provides step-by-

step instructions for building a simple yet comprehensive simulation model.

6.1 Defining the System and Problem

Dobry Products Limited (DPL) plans to reuse an area in its production facilities to finish, pack, and store
“containers” for distribution. The existing facility is shown below. Any equipment will be moved out so that

the space can be used to support the new production area.

The new production area will finish various types of containers and then pack them with components, the
contents of which depend on the type of container. All process times in both finishing and packing depend
on the container type. After packing, containers are placed in a warehouse to await being used to fill an order.
The order fulfillment process is the final part of the model; this is where containers are pulled from the
warehouse to fill individual order requests. Material handling within the facility is yet to be decided;
simulation will help make those decisions. However, the initial thought is to use a combination of conveyors
and AGVs (Automated Guided Vehicles) to move products between production areas.

At this stage in the design process, DPL is unsure how many types of containers they will produce, the demand
for each type, and the components that will be packed into each container. However, they want to optimize
operations and use simulation to help them design the facility and operations. Therefore, the simulation model
will initially be built to reflect the general operations, yet it will contain numerous assumptions that will be
modified as the project evolves. This approach is essential so that the project can be done in a timely manner -
the simulation work must start well in advance of when all of the information is known. In fact, the simulation

will be used to help make some of the design decisions and establish the system’s characteristics and capabilities.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 45 #2 AUTODESK

This is a very wise approach — simulation is most effective when applied early in the design process since things can
easily be changed eatly in a project before too many resources are committed, too many costs are incurred,

and too many decisions are made.

The modeling process begins by identifying and representing the essential components of production in the
finishing and packing areas (equipment, material, operators, transporters, etc.) and defining the relationships
among the components. Later, this is expanded or scaled up so that the model aligns with the company’s
production plans.

Modeling should be done incrementally — start small and simple and add complexity as needed. The best
model is not the one that is the most complex — #he best model is the one that has the minimum amount of detail
necessary to answer the questions being addressed. Remember, no model can replicate the real system — the real
system is too complex. Any model is a representation, albeit a simplification, of the system being
considered.

6.2 Modeling approach

As with any simulation project, modeling and analyzing the system identified above is done in steps, moving
from the simplest representation to the more complex. After each step, it is important to test and validate the
model. The validated model is saved in a file with a different name so that if a subsequent modeling effort

encounters a problem, modeling can “roll back” to the last saved and validated version.

One of the most difficult aspects of modeling is deciding how much detail should be incorporated into a
model. This is often referred to as model fidelity. 1t is very tempting to model as much detail as possible, but
in this case, more is not better. The more complex a model becomes, the harder it is to validate, verify, and
maintain. Models should be as detailed as needed 7o answer the posed questions.

Of course, this is easier said than done; determining the proper fidelity comes with practice and experience.
In any case, modeling should start simple and add complexity as needed. Start modeling with an extensive
list of assumptions and a very simple model. Then, iteratively decide which assumptions need to be
removed and remove them by adding features to the model that address the assumptions.

Be careful not to fall into the trap where a model incorporates features and detail because it caz be done
and not because it should be done.

Another good modeling practice is to look for similarities within the system and model them as a single
instance, i.e., create a base object. Test and validate the instance. Once validated, copy and paste the base
object as many times as needed. For example, if a system has multiple packing stations, model, test, and

validate one station, then duplicate as many as required in the model.

One way to do the above in FlexSim is to create a template object. With this approach, the base object
becomes the parent, and any child will inherit its parent’s properties. Each child’s properties can be
modified to make it unique or it can remain inherited. If an inherited property is changed in the parent, it
is automatically changed in the child.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 4 72 AUTODESK

Another good modeling practice is to use small study models to develop and test concepts before
implementation in the main model, i.e., develop and test in isolation, removed from the complexity of the

main model. This applies to developing logic within a single object or a set of objects.

It is always good practice to skezch the system first. This helps to focus on how the system gperates, not how the
model will be buzlt. Use sketches to discuss the system operations with domain experts. One diagrammatic
methodology for representing dynamic operations systems is the Object Flow Diagram (OFD).

An OFD uses symbols to represent various functions in a simulation

model, such as process, transport, convey, etc. The edge of each symbol ‘ Control (C}

has a specific meaning, as shown in the figure to the right. The Input, '

Output, Control, and Mechanism notation is detived from the IDEF0 ol e Output (0)
! unction

methodology. A partial OFD for the example model that is used in this ‘

primer is provided in the next section.

(Mechanism (M)

p——

[Section 17.3] Prepare a conceptual model.

7

The following section, Initial System Narrative, briefly describes the system that will be modeled throughout
this primer. It provides a high-level description of the system's operation. As with many simulation projects,
modeling can start with assumed logic and placeholder values until they can be estimated or determined.

Initial System Narrative

Unfinished containers arrive at the Finishing Area at a yet-to-be-determined rate. The number of types of
containers and their properties are also not yet known. Fach arriving container is loaded onto a Finishing
Machine by a Finishing Operator. If no machine is available, the container waits in a buffer until it can be
loaded. The size of the buffer and how the operator decides which container to process next must be studied.
To maximize throughput, DPL is considering using the shortest-processing-time rule to load the Finishing
Machines but is concerned some container types may wait too long for processing if it uses this approach.

The finishing process transforms unfinished containers into finished containers. The time to finish a container
depends on the type of container, but the types are still being determined. The finishing process is automated;
ie., it does not need an operator. However, it is expected that a setup operation is required on the Finishing
Machine if the next container type to be processed differs from the previous one produced on the machine.
The Finishing Operator is expected to set up the operation. The number of Finishing Machines needed to meet
forecasted demand and product mixes is also yet to be determined — the simulation will help decide this. Each
Finishing Machine needs to run a quality check periodically. It is also subject to breakdowns that require repair.
The quality check activity does not require other resources; it primarily uploads data to a server. However, any
repair that results from a breakdown is expected to be performed by a Finishing Operator.

After the finishing operation is complete, the finished containers move to the Packing Area via a conveyor. The
Packing Area transforms an unpacked container into a packed container. At Packing, each container is loaded
with a mix of components that depend on the container type. DPL is considering using a robot at each packing
station to pack the containers. Components are delivered in batches to the Packing Area, and the Finishing

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 47 72 AUTODESK

Operator unpacks the batches and makes them ready for packing. After Packing, packed containers move to
the next process, Warechouse, where they wait in Racks until picked to fulfill customer orders.

Since there is uncertainty in the number of Finishing Machines, packing stations, Racks, Operators, etc., the
primer will focus on developing the pieces of the system and their relationships; i.e., this model will be a small
version of the final system. The model will include two Finishing Machines, one Finishing Operator, one
Packing Station, one Rack for each product type, one Order-Fulfillment Station, and the means to connect
these areas, i.e., conveyors and AGVs. Once this model is validated and verified, its pieces can be used to scale
up the model and design the entire system.

A portion of the system narrative is represented symbolically in the following OFD.

N Finishing Machine

Finishing Machine N Packing Station

F.0.1
Unfinished Finished Packing Station
SRR Contai Container Container Packed
. ontainer .
time Container St Process time | conveyor - Container
between orage 1 (cap) Process time >
arrivals (cap) F.0.1 1 P at — 1
speed/ e
(1) distance (1)
. speed/ -~
distance » F.0.1
Batqh Size ™\ "Comp. Storage
F.O. ‘Comp (cap) Fo Finishing Operator

time Comp. Batchﬁ Batch Size "~.,
between OComp. Batch "\ v,
batches 1

time
between O

batches

Note that the key performance measures of interest — denoted by the “slanted rectangle” symbol are the
contents of the storage buffers for the containers and components (denoted as quantity), utilization of the
Finishing Machines, Finishing Operator(s), and Packing Station. Also, the item flowing through the model
changes, or is transformed by the operations, from an unfinished container to a finished container to a packed
container. Thus, the Finishing Operator moves material from the incoming buffer storage to the Finishing
Machines, performs the setup and any repairs on the Finishing Machines, and unloads batches of components
in the Packing Area. More information on constructing OFDs is available in Section 3 of Chapter 17 in the
Applied Simulation: Modeling and Analysis Using FlexSim textbook.

Each of the basic modeling objects used in the simple model is explored, and in doing so, the objects are
modified so that the simple model becomes a better representation of the real system considered in the primer.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 4 72 AUTODESK

7 BASIC FIXED RESOURCES, FLOWITEM BIN, AND INITIAL CUSTOMIZATION

objects.

Chapter 7 creates the initial model of the Finishing Area and introduces Flex:S7n/’s basic Fixed Resource

This section explores in more detail FlexS7z’s basic fixed resources (Source, Queue, Processor, and Sink),

which were used to develop the simple model. The objects will be customized to represent the system that is

being modeled in this primer.

The base model for the additions described here is MyFirstModel, which was saved as Primer_1 in

Chapter 5.

7.1 Basic object properties and structure

Objects are customized by modifying their
properties, which are accessed either by double-
clicking on the object in the model view or
through the Properties window when an object
is selected. This was discussed eatlier, but the
tigure is repeated to the right.

The number of object properties in FlexSim 1s
extensive, thus providing a great amount of
modeling flexibility and capability. Since this
primer aims to introduce the basics of how
FlexcSim works and some of its capabilities, only
the most basic and salient features and

properties are presented. Therefore, it is beyond

Processort

1) Template

- Visuals

- Labels

= Processor
axContent [1

Setup Time

[Juse Operator(s)
rocess Time:

[Juse Operator(s)
= output
2 Tnput
= Ports
2 Triggers

-l Labels

FaxXti s

[Automatically Reset

=) Processor

Max Content

Setup Time

B]

erstorls) | 1

the scope of this primer to discuss every property on an object interface and every object and feature in FlexSin.

With the foundation provided in this primer, the User Manual can be used to understand other properties and

parameters.

Once a property value is changed on an object, it is automatically saved.

As mentioned previously, the basic structure of Flex:Szz objects is the same, with properties grouped into panes,

such as Statistics, Visuals, Labels, Triggers, etc. Having a common structure greatly enhances learning FlexSim

and its overall ease of use. Each of the more common pane types is defined below. Many of these panes and

their properties will be discussed in the primer.

e Statistics pane contains basic performance measures for the object that are continually updated as a model

runs.

e Visuals pane defines an object’s size, 3D shape, color, position, etc., as well as flags for controlling what is

displayed, the object’s accessibility, etc.

e Labels pane defines user-created properties and their values, which are used or updated during a simulation.

There are multiple types of labels, such as numeric, string, pointers, and arrays.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

e Triggers pane invokes optional actions that can occur as a model runs. Triggers have many diverse uses

and are grouped both by when the action occurs and by what type of action occurs. The type of trigger varies

by object, but many triggers are common across all objects. When an action specified by a trigger is executed

during a simulation run, it is said that the trigger “fires.” Trigger options are available through the

button on the pane interface.

o Triggers are first specified by when they occur, such as On Reset,
On Stop, On Entry, and On Exit (when an item enters or exits
an object, respectively), etc. The figure to the right shows when
triggers can fire in a Processor. For example, the second option,
On Process Finish, is used to add some action when the

processing of an item is complete .

|+ Input
+] Ports
-J Triggers

On Setup Finish
On Process Finish
On Entry

On Exit

On Draw

On Pre Draw

On Reset

On Message

On Simulation Start
Pick Offset

Place Offset

On Stop

On Resume

On State Change

o Once the when condition of a trigger is

. . +| Input 2
defined, then the what action that is to occutr || ports ~
is specified. The figure to the right shows | Trigers ?

. _ o~
the actions that are possible when an On | oo e roin
Process Finish trigger fires. The actions are | | B QS X
. Data > Set Label
grouped by the type of actions, such as Data Control | et Label and Color
(e.g., set a label value), Control (e.g., open Visual > Setlabel by Percentage
>

. . List:
ot close object potts), Visual (e.g., set color -
Code Snippet

or size), List (e.g., push to or pull from lists),
and Code Snippet.

In the case of the figure to the right, for

Set Label Table Value

Set Name

Set Tracked Variable

Write to Global Table

Add Row and Data to Global Table

Increment Value
—

an On Process Finish trigger on a

Processor, a variety of Data actions are possible, such as Sez Label, Set Label and Color, ..., Increment

Value.

o All objects have triggers related to their type, e.g., OnCreation in a Source-specific object,

OnProcessFinish is only available in a Processor, OnResourceAvailable is only found on task

executer objects, etc.

All Fixed Resources have an Output property pane, except the Sink, i.e., no items flow out of that type of

object. The Output property controls to which output port an item should be sent when it leaves the object.

That decision may, for example, be based on the downstream object(s) availability or an item’s attribute or label

value. The Output property also specifies whether an item uses a transport to reach the next object. If a

transporter is used, it is requested based on specified criteria. The item waits in the current object until a

transporter arrives and loads the item. Therefore, if an object’s capacity is one item, then a new item is not

moved into the object until the current object exits via a transporter (if required). Note that if no transport is

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

used, an item moves between two Fixed Resource objects in zero simulation time regardless of the distance
between the two objects.

All Fixed Resources have an Input property pane, except the Source, i.e., no items flow into that type of object.
The Input property enables “pulling” items into the object. Normally, items move through a FlexSi7 model by
being “pushed” from one object to another; i.e., the current object determines to which subsequent object an

item moves. Pulling enables an object to determine which item it processes next based on specified criteria.

Each object has a unique name. FlexSi7 must ensure each object has a unique name so it automatically assigns
a name when an object is created by selecting it from the library and dropping it into the 3D modeling view.
When a model has multiple instances of a type of object, even with a relatively small number of objects, it
becomes difficult to recall which object does what in a model, e.g., the difference between Source! and Source2.
Therefore, each object should have a meaningful name that reflects its role in the model; e.g., ContainersArrive
is a much more meaningful name than Soxrel. The naming is for the modeler’s benefit and that of others who
access the model, not for the software. The object names used in the primer are the author’s choice. While you
do not need to use the same names, it is helpful to do so to make the primer easier to follow.

Each of the following sections defines one of the most basic objects and describes how to customize it to
represent the primer’s modeling example.

7.2 Source object

The Source object creates a modeling boundary, a starting point for what is being considered in the system.
For this example, what happens to the containers before they arrive at the Finishing Area is not a concern at
this time.

As stated earlier, object names should be meaningful.

- \\
» Name the Soutce object ContainersArrive in the text § D%
box at the top of the object’s window and as shown x . @ | contanersarive =N
in the red box in the figure to the right. \ ContailiersA =/ Statistics 2 7]
~~Outputi{ 5 Template & ?
Biocked: 0. =
Inf tion about the item being created is specified on e = ?
nformatio g P T |2 Labels 7% 2?
the Source pane. Items are created in one of three ways -| Source 2
or modes based on the Arrival Style property: Flowltem Class | Box s
o [nter-Arrival Time uses an inter-arrival time function AtvalStle: Il Er Ve TS —I

[Arrival at tme O

that determines the length of time until the next item
Inter-Armrival Time

is created and arrives in the model. Once an item exits exponentia(0, 10, getstream(curres| mn v 4 &5 2
the Source, the function generates the time until the <] Output 1)
next arrival, and the cycle repeats. Note that if an item <) Ports 2

. . . =] Tri ?
cannot exit the Source, e.g., it is blocked by a e re .

downstream object, then the item will wait in the
Source until it can be released. Once it is released, the time until the next arrival is determined. The first
item may arrive at time 0 or when determined by the inter-arrival time function.

The default value for the Arrival Style property is Inter-Arrival Time, which is used in this example. The
property is shown in the red box in the figure above.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

o Aival Schedule uses a user-defined schedule table for when items should arrive. The arrival time, name,
number of items to create, and item labels are specified for each table entry. The schedule may be repeated.
This option will be discussed later in the primer.

o Aprrival Sequence is like the arrival schedule mode, except that there is no time associated with the arrivals.
The source will create the flow item for a given table row, and then, as soon as the last flow item for that
entry has exited, it will immediately go to the next row in the table. You can also repeat the arrival sequence.

The time between arrivals is defined by the Inter-Arrival Time property. The default value is
exponential(0, 10, getstream(current)), i.e., each inter-arrival time is obtained by a random sample from an
exponential probability distribution with a mean of 10 time units, 10 minutes in this example. The general shape

of the probability density function for the exponential (x)
distribution is shown in the figure to the right. Technically, the A
exponential distribution is the negative exponential but is referred \
to as the exponential for brevity. The parameters of the
exponential distribution are location (0), scale (10), and stream
number (getstream(current)). Location is the lower bound of the
distribution; scale is the mean of the distribution and sets the
steepness of the descent of the curve; and getstream(current) is a

FlexcSeript command that provides a stream number for FlexSin/'s

random number generator. The methodology for generating

random numbers is not covered in this primer.

DPL is unsure of the arrival pattern for the upstream process that will produce the containers that must be
tinished in the new facility. A group of engineers and domain experts discussed this and decided an average
rate of three containers per hour should support two finishing machines.

The average rate of three containers per hour is the same as saying the average time between arrivals is 20
minutes. Simulation typically uses times between arrivals and not rates when specifying the arrival process. The
average time between arrivals is 20 minutes, but it is not a constant. Since there is variability, what probability
distribution should be used to represent the arrival process?

For now, the engineers have decided to assume a triangular distribution. To specify this distribution, only the
minimum time between arrivals, maximum, and most likely values are needed. Therefore, after some discussion,
the engineers and domain experts decided the minimum time between arrivals is 10 minutes, the maximum is

35 minutes, and the most likely is 15 minutes.

For this example, and as shown in the screenshot on the left in the figure below, change the inter-arrival time

distribution.

» For the Inter-Arrival Time property, use the dropdown menu and select the Statistical Distribution
option, followed by the Triangular option in the submenu.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

LS A

._gﬂ.. - t i
Cortanarsime 7] \
(uﬂhﬂl* pprir : ‘7 1]/ —— -
~Guiind = | [
Blocked; | -/ Template %7 \ L) & | Contanersirrive h 2]
111 Visuels %7 “Contain
| tabels 2% S |) Statistics 7?7
=2 Blocked: | +| Template %2
: 1| 41 visuals k)
Bemoulh 4] Labels P allir: 0 ¢
O ~| Source O ?
-'_: ! D Undomm FI - I(C‘ - Bo > -.g.
" i owltem Class X v | 3
= Sepoaeie Arrival Style Inter -Arrival Time
%] Arrival at time 0
Inter-Arrival Time
trangular{10, 35, 15, getstream(cur | min b g /'
n ! - - e S R SRV O,
| Distribution trianguiar v e
| Minimum 10 - ’l
4 Maxmum 5 v ,I
Mode v ,’
ol Stream getstream{current) v #

Log Normel Meen Std Oev

Normal

Based on 1000 samples, Mean = 20,05, Standard Deviation = 5,38

Random Walk

Fangulyr

Unilom

11121314151617 18 1920212223 24

FlexcSim offers many distributions, each with a different set of parameters. The triangular requires three

parameters: the minimum, maximum, and most-likely (mode) times between arrivals.

> As shown in the screenshot to the right in the figure above, enter the triangular distribution’s parameters
for this example. The Minimum, Maximum, and Mode (most likely) values are 70, 35, 75, respectively.

To implement a distribution, the user interface provides the specified values to a FlexS$7i# command so that it
can be executed. In this case, it translates the interface values to
triangular(10, 35, 15, getstream(current))

These specified parameters result in an average time between arrivals of 20 minutes, the sum of the three
parameters divided by three. In general, the mean of a triangular distribution is the simple average of its three

parameters.

Again, an average time between arrivals of 20 minutes corresponds to an average arrival rate of 3
customers/containers pet hour. Rates ate the reciprocal of time values; in this case, the average arrival rate is
60 minutes/hour + 20 minutes/customer = 3 customers/hout. Simulation software typically uses average times

rather than average rates.

As noted earlier, the last parameter in specifying any probability distribution in Flex:Sim 1s the number of the
random number stream to be used for this source of variability. This is implemented through the command
getstream(current). Again, the discussion of random number streams is beyond the scope of the primer.
However, it is fine to use the default for the Stream property. It is good general practice that stream values be

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

unique for each source of variability in a model — this is handled automatically by FlexSi# through the
getstream(current) command. Flex$7» commands will be discussed later in the primer.

As indicated above, a detailed discussion of how probability distributions for interarrival times, process
times, failure times, etc., are selected is beyond the scope of this primer. However, FlexSim provides a tool
to help with the process; it is a curve fitter that fits sample data to common probability distributions. This
feature will be discussed later in the primer.

Also, it is generally a good idea to use bounded distributions so that the model does not use unrealistic,

extreme values that can result from such distributions as the normal and exponential.

More information on selecting probability distributions to use in a simulation model is available in Chapter
8 of the Applied Simulation Modeling and Analysis Using FlexSim textbook. However, the decision on what
probability distribution to use is briefly discussed later in the primer, in the sections on the empirical
distribution and curve-fitting tools.

The FlowItem Class property specifies the type of item created
by a Source. The default type is Box, but other options are ’ L]
. . . = ’ ‘ ContainersArrive ‘ T:g (7]
available in the drop-down menu, as shown in the figure to the Containe®A | gioustics EE
right. Custom items are easy to create in the Flowltem Bin, Biocked: 0) Template =
. . .]| 2 visuals 2
which is discussed later. = Labels 757
= Source By 7
. . . FlowItem Cl B | =
» As shown in the figure to the right, for this example, select oIS = :
Arrival Style Cylinder v
the Toze as the FlowItem Class value. DA attme (S22
Inter-Arrival Time _
triangular(10, 35, ‘Tﬁ)?nan v
The figure to the right shows what the basic Souue Tk -
Tote object looks like. dPorts s :
: + Triggers 2

In this example, DPL produces multiple types of containers, all of the same class; i.e., they can all be represented
by the same container item, Tofe. For now, assume three equally likely types of containers are produced; this
will be changed later in the primer. Each container will have a custom property or Label named Type with
values of 7, 2, or 3. To easily distinguish the types in the model, each container object will be colored according
to its Type value.

» To model this in FlexSim, use the Source’s OnCreation trigget, and select Data and then select the Ser
Label and Color option, as shown in the left screenshot in the figure below.

» Use the default properties for this option as shown in the screenshot on the right side of the figure below.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

5 == o=

: 8 N
/ \ = / \ A
J’ s e 13 2t |" ‘—ﬁzﬁ’ Contanersirrive h 9_
: Qonlaine%@ e Ll \ »Conlzine&l‘ 2 I
,.(,\fwru 4 Template 2| W"‘ | Statistics 2 J
Biocked: 01 | Visuals 27 Biocked: < Template =2
+I Labels 75 ‘ © | 2 Visuals =
) Source m A =l Labels Pl 1 4
Flowltem Class Tote v & =} Source > ?|
anwaiSte | Inter-Arrival Time . |Fowitem Ciass [Tote v e
‘A":valSM: Inter-Arrival Tme

[] Arrival at time 0

Inter-Arraval Time

trianguler(10, 35, 15, gatstream(cur | mn v 4 S5 P
| =) output 2|
=l Ports ? I
On Creation = Trogers ?]
e X | o v
Data > Set Label On Creation
Control » Set Label and Color | 4 %
= I b Set Label and Color
Visual » Set Label by Pescentage
Lists > Set Label Table Value Object |item -7
Code Snippet Set Name liba [Te 5
+3 ProcessFlow: Attach to lrstanced Flow Set Tracked Variable
Write to Global Table value |duniform(, 3, getstream(current)) v @
Add Row and Data to Global Table

ncrement Value =

Thus, the OnCreation trigger randomly assigns a value to the label Type and colors the item accordingly when
itis created at the Source. The value of Type results from a random sample from a discrete-uniform distribution
with possible values of 1, 2, or 3, with each value equally likely. This action is accomplished by the FlexSzn
command duniform(1, 3, getstream(current)). The item’s color is based on its Type value and uses FlexSin's
default color scheme, where 7 is red, 2 is green, 3 is blue, 4 is yellow, etc. Of course, a custom color scheme
can be defined.

7.3 Flowltem Bin

Items are customized through the FlowItem Bin, which e Stati
A & LA v % v B @~ D ¥ Tods| i FlowltemBin] Exce

is accessed, as shown in the figure to the right, via its
button on the Main Toolbat.

The figure below shows an example of the FlowItem Bin. The left-hand portion of the interface shows the
default classes of items (Box, Cylinder, Sphere, ...). The toolbar above the list of items (in the red box) is used to
add, copy, delete, or reorder item classes. The insert in the figure, obtained by pressing the “Edit Packing
Methods” button, shows the packing methods available for the container items; these methods are defined
below. The right-hand panel, the Properties window, shows the properties of the selected item, where size,
shape, color, etc. are defined.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

£ Model 2 Mocel METESNIERER v X Properties X
- (o -
¥ X (3 Edit Packng Methods & 9 |~ 5 |1« 1t ®
a———————————— | Visuals -
Cyinder
Sohere W | fs3cd\General\Box. 3ds i
: I -
/
”~
v Y z
= 151 5 .30 ~| -
¥ X .3 L0 15| -0.30] 0.00
‘est Tube = e ol
Pl Bottle Defaut 5| 0.0 &/ 0.00 300
ote copy Sivple . . 1415 = »
Laver Stackng 106 Jgl 952 L
Truck
Pallet Stacking More Visuals
| Labels P 0k
FaAaxntix
J [] Autoessticaty Resst) 2
(7] oK | Shape Frames
| 0 - Base Frame v g
=l Triggers 7
v

There are two general categories of flow items — Basic and Container.

e Basic flow items are simple shapes, such as Box, Cylinder, Sphere, Man, Women, Test Tube, and Pil] Bottle. Their
visual appearances—such as size, shape, rotation, and color—can be customized in the Properties window
of the Flowltem Bin.

e Container flow items — Pallet, Tote, and Truck — are special in that they can be packed in various ways and
thus contain basic items. There are five packing methods, as shown in the popup window Packing
Methods in the figure above. The window is opened by pressing the Edit Packing Methods button. The
packing methods are briefly described below and may be selected and modified through the popup window.
Modifying the methods is beyond the scope of this primer.

o The Default packing method stacks basic items on top of the container item, filling up as much available
space as possible before moving to the next level. This is similar to how items are stacked in a Queue
by default.

o The Pallet Stacking method is used by the Pallet container item. It is nearly identical to the Defau/t method
except the z-size of the pallet adjusts to accommodate items placed in a new layer.

o The Simple packing method is used by the Toze. This method is similar to the Defanlt method, except
items are packed into the container instead of onto it.

o The Layer Stacking method considers the uniformity of item sizes. When items have a consistent height
(z direction), they are put on one layer of the container item. As soon as the height of a flow item
differs from the others, it is placed on a new layer. The width (x direction) or depth (y direction) can
be checked instead of the z.

o The Truck packing method is used by the Truck class of items. Within the Truck item, other items are
first stacked on top of each other at the forward end of the truck, and the stacking moves toward the
back.

o Each packing method can be customized using Flex:Seript, but this topic is more advanced.

It is good practice to create a copy of the basic class used in a model and rename it. Since the class

will usually be edited or customized, the copied class is the customized one, not the basic class.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

> Select the Tote class, then press the button to the right of the F5 Model 5 Model [TFONIEMEN"
button on the toolbar above the list of item classes, i.e., the button d .—J Ak BIE?
highlighted by the red box in the figure to the right. This creates a new
Cylinder

class named Toze Copy that is a duplicate of the Toz class. Sphere
Pallet

» Select the created Tote Copy class, as shown in the red box in the figure to the left below.

» In the Properties window, change the item class’s name to Container, as highlighted by the red box at the
top of the figure to the right below.

» Also, in the Properties window in the figure to the right below, add a numeric label, i.c., a user-defined

property. In the Labels pane, as shown in the lower red box, add the label by pressing the button and
selecting Add Number Label.

Preds v e Tramee gve How Be - ¢ - o — =) 1 ™ v o)
v e (2 o
» As shown in the figure to the right, change the label's name from /abe/1 || = tabels 7=
to Type and leave the default value of 0. This value will be changed to | # =% ¥ ¢ :
. . . | 0
a value of 7, 2, or 3 when an item is created in the model through the M —
. . . . - [J Automatically Reset 3 =3
Set Label and Color trigger described earlier in the Source section.
» Finally, as shown in the figure to the right, resize the containet. e "u e "o
As highlighted by the bottom red box in the figure to the s -
right, set the x, ¥, and g dimensions to 0.5, 0.5, and 0.5; thus, : ' =,
the container is a cube. S = s
As highlighted by the top red box in the figure to the right, 3 CE—)
recenter the object by setting the x, y, and g locations to 0.0, TP S Y
0.0, and 0.0. e
Clactsvaus :,U
) Munisom
.nm;-n—a.

> In the Source object’s Source pane, change the value of the Flowltem Class to Container using the

property’s dropdown menu. The Source now creates items from the Container class, not the Tote class.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 57 72 AUTODESK

7.4 Queue object

The Queue object delays an item if no downstream object is available to process an item. In this case, if a

container arrives in the system and the Processor is busy, it waits in the Queue.

For this example, the Queue properties are changed as
follows and as shown in the figure to the right.
» Name the Queue object ContainerStorage.

» Change the Maximum Content property from the
default value of 7000 to 50. By default, the queue size
is assumed to be large (1000), but in this example, it
is assumed that the maximum realistic quantity is 50.
This will likely change as the system is designed and
the space available for storage becomes clearer.

» Change the Item Placement property from the
default value of Stack inside Quene to Horigontal Line.
By default, items are stacked in the queue by filling up
as much available space as possible before moving to
the next layer. The quantity in a layer depends on the
physical size of the Queue and of the items.

7.5 Processor object

[\l--.

l | l é [VContarinerStorage

.(\.omainerStgag +| Statistics

Cu Ent: | 4 Template
MaxCc_tent: | 4] Visuals

AvgStaytime: 0
+| Labels
-] Queue
Max Content {59
Item Placement Horizontal Line
Stack Base Z [0, 10
MurFo
[[JPerform Batching
+| Output
+| Input
+| Ports
=l Triggers
g v

il

) B B S B

The function of a Processor is to invoke a planned delay on items flowing through a model.

» Name the object FinishMach_T; it is anticipated that more than one finishing machine will be needed.

Each finishing machine processes one container at a time, which is the default value for the Maxzimum Content

property. However, note that a Processor can process multiple flowitems concurrently by changing this

property’s value.

As an aside, using the Maxéimum Content property is a quick and convenient way to represent multiple

resources by using only a single object. This is handy when building a simulation model to obtain a rough

estimate of system requirements. However, modeling multiple resources through a single object precludes

modeling certain system aspects, such as downtime on individual resources, operator travel to specific

resources, processing specific types of items on specific resources, etc.

The planned delay time is specified by the Process Tzme property. The default is a constant 70 time units. In

this example, the finishing time depends on the type of container; i.e., the finishing time for Type 1 is 15.0,

Type 2 is 20.0, and Type 3 is 30.0. This is implemented through the Values By Case option. In this example,

each case corresponds to a type; therefore, three cases are created.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

The notion of “Case” comes from computer programming, where a Case construct is used to select a value

from a set of alternatives based on prescribed conditions. It is like a series of if...then statements but is easier

to read and write.

To model the situation where process time depends on
product type, perform the following steps.

» Sclect the Process Time propetty, then select the o [Fshiach_1 i T2 @
Values By Case option from the drop-down & Statistics £

4 +] Template 5 ?

menu. +| Visuals &R ?

Finisk Jacl =) Labels 222

Output: { | processor)

» Create 3 cases, in addition to the default, by using

the button; then set the values as shown in
the figure to the right.

%ldle: 0.
%Processing

Max Content
Setup Time
0

[[Juse Operator(s)

Process Time
Values By Case

E

Animate Items

min v A

The logic works as follows. When an item enters this Case Function |item. Type -2
Processor and needs a processing time, FlexSim checks S X
the value of the item’s label Type and it becomes the case et BT e 0 g
number. Therefore, if an item’s Type value is 2, then the | < ‘ : ‘ i : /:
time specified for Case 2, 20.0, is used for the value of :: ;j ; ::: : ;

the ite’s process time.

The Default Case value is used if an item has a Type value other than 7, 2, or 3.

The Default process time in the [alues By Case logic is set to 7000 or any large number. This helps the
modeler remember to add a Case if a new type of container is added to the model. This way, if a fourth
type is added in this example, and this property is not updated with a new Case, then the item will be
delayed a long time at the Processor and things will back up in the model. This should prompt an
investigation into the problem, and hopefully, the failure to update the process time is discovered and
remedied. If a small value is used for the default, this oversight may not be caught, and the new container

type will use an erroneously low value, thus affecting the results.

The notation in the Case Function property is the way FlexSinm refers to alabel. In general, it is referred to using

< »

dot notation because a dot or “.” separates parts of the statement, i.e., object.LabelName. In the case of the
property value zem. Type, the object is the flow item, referred to as ifemz, and the name of the label being

considered is Type.

Since the three types of containers are equally likely, the average processing time is 21.67 minutes (average of
15.0, 20.0, and 30.0). Recall the average time between arrivals from the source is 20 minutes. This means the
single finishing machine will be overloaded since the planned utilization is greater than 100%, on average
(21.67/20.0 = 1.083 or 108.3%). The situation will actually be worse since there is variability in the system due
to the type of container, time between arrivals, and the finishing machine not being available 100% of the time
due to downtime. One way to remedy the large queue contents is to use another finishing machine, which is
done later in the primer.

»2 AUTODESK

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

In addition to the processing time, there is a setup operation. The setup operation is separated from the process

time for two reasons:

(1) An operator will perform the setup operation, but the machine will run on its own once it is set up. This
will be incorporated into the model later in the primer.

(2) The setup operation only needs to be performed when the type of item (container) changes.

The time to perform the setup operation, when needed, is assumed to be a constant of two minutes.

The setup logic is implemented into the FlexS7n model X 7
as follows and as shown in the figure to the right: N
» Sclect the Setup Time property on the Processor ‘ ;| Frsrah. 1+ 12 @

. +| Statistics 22
object’s Process pane, then select the drop-down : N e =7
menu option If Items Label Changes.] Vesuals =

Finisk_lach +J Labels =
‘7?]%‘[2"“:0(=) Processor &= ?
» Update the resulting menu’s property values as %Processing ax Content [1 | Hanimate 1tems
shown in the figure to the right and as defined below. o — o~ G 2

» Label: no change; use the default value “Type.” Label Type" -2

» If Item’s Label Changed: Sct this property’s IFTtem's Label Changed |2 -2

value to 2. This represents 2 minutes of setup Otherwise o -/

time. e o ek s et e,
» For the propetty Otherwise, change the default —— —
value 5 to 0; i.e., if the item to be processed is) Triggers ?

the same type as the one just processed, then
there is no setup time.

7.6 Sink object

The Sink object removes items from a model; therefore, it is the opposite of a Source. However, this
functionality is much less complex than that of a Source. Removing items from a model is not as involved as
creating them, which involves defining what to create, with what properties, when to create them, etc. The Sink
is another modeling boundary, the stopping point for what is being considered in the system.

» 'The only change made to the Sink is to change its name to Nex/Process.

L . .
If you haven’t already done so, save the model. Recall that it is good practice to save often.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

8 BASIC MODEL OUTPUT

Chapter 8 describes basic object statistics and creates a dashboard with time series and histogram

plots of measures of performance for the Finishing Area.

Simulation models are developed to assess the dynamic behavior of an operations system. Therefore, multiple
means exist to access the results or output from a simulation model; a few simple ones are described here.
Output is usually obtained from FlexSin’s Experimenter. It, among other things, is used to:

e Execute multiple experiments in a single run.

e Control experimental conditions, such as the number of replications to run and defining a warm-up period
if needed. These are advanced topics discussed later in the primer.

e Obtain statistical estimates of system performance measures.

e Directly link to OptTek’s OptQuest optimization software.

However, only a few basic output measures are discussed here for now.

The base model for the additions described here is Primer_1 that was saved at the end of Chapter 7.
Consider an 80-hour run of the simulation model (equivalent to ten 8-hour shifts). In model terms, this is 4,800

minutes; recall, the model’s time units were defined as minutes when the model was initially created. The figure
below shows the model’s run time settings, followed by the instructions.

Run Time: ‘0.00 to 4800.00 l v¥| Run Speed: [| 4.00 |v
[[tem Bin Display Mode (® Minutes (O Date and Time (O Both
Start Time [:00:00aM [2][8/24/2024 E
Warmup Time
| 0.00 [8:00:00aM 2][8/24/2024
Stop Times a0
[4800.00 [400:00pm [2]][8/27/2024 Elg

» Select the dropdown menu on the Run Time property that is located on the model’s Execution Toolbat.
» Check the Stop Time box and enter 4800 into the text box to the right of the check box.

So that the model finishes more quickly, the Run Speed property can be adjusted higher than the default value
of 4 using the slider interface.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

8.1 Object Statistics and Properties

As shown in the figure below, a few basic output measures are provided for each object on the modeling
surface. These values are continually updated as a model runs. The statistics of the selected processor are also

shown in the Statistics pane on the Properties window.

Ll ~ % Propeties <y
/ﬁ: o FrisMach 1 |28
P ™\ 727
—‘w —— 2
T k Process

| ContainerStorage 2% 7 er:‘pm’: 214 o+

ContalnersAt CurContent: 26 FinrshiMech ™

ogwnne:: u;ve MaxContent: 27 CurContent: 1
Bl um‘ 0.0% AvgStaytime: 18.4 MaxC{_tent: 1 ¢

T AvgStaytime: 22.4

o

At the end of the 4800-minute simulation when this screenshot was captured, the Processor, named
FinishMachine_1, was processing an item (CurContent = T), the most it processed at one time was 1
(MaxContent), and the average setup and process time is 22.4 minutes (AvgStaytime).

Additional statistics are shown in the Statistics pane on the Properties window, such as the object’s current
State, processing, total items Imput and Output, 215 and 274, respectively, average contents of the object Content-
Auvg 1.00, and Staytime-Min and Staytime-Max, 15.0 and 32.0, respectively.

The pushpin icon is used to “pin” a statistic for that object onto a dashboard, as described in the next section.

8.2 Dashboards

Charts and graphs are very helpful for assessing a system's dynamics compated to considering a single value at
a snapshot in time, like the on-object and Properties values described in the previous section. FlexSim provides
a wide variety of charts and graphs through the Dashboard tool. A Dashboard is either accessed from the
Main Toolbar or from the Toolbox (Tool Library). A model may have multiple dashboards that capture

various aspects of a system’s behavior.

Charts and graphs are created on a Dashboard. Three example charts are described here: two types of time-
series plots, where the value of a measure is plotted over time, and a histogram, which displays the frequency

of occurrence of a value or range of values.

» Click the Dashboards button on the Main
Menu, as shown to the right, and select .Add
Blank Dashboard. You can also add

Backgrounds i Dashboards +3 Process Flow Eg Workspaces o 0

Add Blank Dashboard r
Add Parameter Table Dashboard > ‘ v X

Dashboards through the button in the
Toolbox.

»2 AUTODESK

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

As shown in the figure below, a “blank” dashboard, or dashboard workspace, is automatically created just to
the right of center on the screen. Also, a library of chart tools and templates is shown in the Library on the left
side of the modeling environment. Note the library of 3D objects is automatically replaced by a library of chart
types when a Dashboard workspace is selected. Thus, if the 3D or Model view is selected, the Object Library
is displayed, and if a Dashboard workspace is selected, the chart library is shown. The space to the right of the

workspace, in the Properties window, is where the charts and graphs are defined.

oA | SEPRATE R MDD { Tods Jerosttetn Sred Bgrree [l s Bedgrourchs gl Desthowch 3 Procmmrow () Wirkapaces %]

FiiRemt P un @ Soo WO rastrowed Dpl S p)Sp RunTrme | 430000 v unSpeed 1 “we -
Lbrary Xy Mode > xS - % x

L Leraey | f Tosbax
7 |
- Content

& cotart

€ Average Content

& ey Type ContsnerStorage

Outgnst CwrComent. 26 FinishMach_1
= MoxContent: 27 CurContent: 1
@& ovou (AvgStaytima: 18.4 MaxContent: 1
& Ot froxr - AvgStaytime: 22.4
3, OuDuty How
& Coroate Oupe

& Corons
i Covoosts DUt By Hour
£ OupL By Type &

& Oupes 1o

L OBy He

The library of chart options on the left in the figure above offers many templates for commonly used charts.
Of course, as is always the case in FlexSim, custom charts can be created. However, for now, the primer uses
the predefined ones.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

8.2.1 Time-series plot

The first type ?f chgrt considered in this example, as = oabond
shown to the right, is a system-level plot of the total

content of the Queue object named ContainerStorage Content Vs Time
over the simulation duration (4,800 minutes). In this I ContainerStorage

case, the chart clearly depicts the dynamics of the -

system. It also indicates that, as expected, the queue 20
continually grows throughout the simulation. Recall this 12
is because the average process time is longer than the 5
average time between arrivals. Conversely, the average 0

service rate is less than the average arrival rate.

To create the time-series chart:

» As shown in the figure to the right, select the Content chatt type in |7 X AR Mol
. . I Liveary f§ Toabo:
the Library's Content pane; then, select Line Chart from the pop-up : il
menu. The icon in the red box indicates there is a choice of chart § content =
types available; in this case, Bar Chart, Line Chart, and Table. Selecting | & content —
: . : . # Average Content [——
the chart type depends on what information is to be displayed. @' mmnfiet 0y = I
g Composite WIP O
g WIP By Type O Bar Chart
-] Output
& output O ’/\\.,/
' Qutpuf i .7
€ Output /Hour O o
Py Output By Hour
¢ Composite Output o
¢ Composite Output /Hour (5
Composte Output By Hour Table
t;‘ Output By Type o
A% (st Fbineir By Tuns
» Drag the Library item onto the | e - X Froperses x
1 [[contentvs Time
Dashboard workspace, where it - iid
. .. . - Ophiors. ?
can be sized and positioned. This e
. . . ,v "o
is a drag-and-drop operation, just | | JM
like dragging objects onto the 3D p— '

view. In the figure to the right,

W ContanerStorage

the chart outline is shown in the 0 aghns

workspace. The small black b

squares on the perimeter of the
chart are resizing “handles.”

» In the Properties window, -

change the name and title of the
chart from Content Vs Time to something more meaningful, for the example, Contents of Container Storage.

The only required input in this case is to identify which object(s) to plot. Plots for multiple objects can be
overlaid on the same chart. In this simple example, only one object is considered.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» As shown in the figure above, in the Options pane, click the button in the Objects section, then choose
Select Obyjects. This generates a list of all of the objects that are currently in the model by category (Sources,

Queues, Processors, etc.).

» From the Queues category, select the object ContainerStorage, which is currently the only queue in the model.
Notice that the object is highlighted. Now press the Se/ect button. The ContainerStorage object is now
displayed in the Objects section.

> While not required, it is suggested that the value of the Time Axis || settings ?
Mode propetty on the Settings pane be changed from the default Show | Mshowtegend

. . Y Axis Scope Range calculated using all data
excact time and date to Show Duration. ' T
Y Axis Range Full Range v

» Also, change the displayed units from Seconds to Hours. This changes
the x-axis from calendar date and time to just the time, in hours, since

the start of the simulation. [ime Window
Time Axis Mode

Seconds

Show Duration v
w Show exact time and date
. L. B8y Show Duration
» Since only one value is being plotted and the chart title is descriptive, | e >

Hours hd

uncheck the Show Legend box (also on the Settings pane).
» The default settings for all of the other chart properties ate fine for now.

» Relocate the chart on the Dashboatd.

e As noted above, when a chart is selected, it contains a double-lined frame around it with “handles.”
Handles are small squares at the corners and midpoints of the sides of the charts. Also, notice that
when the cursor is over the perimeter frame, it changes from the standard arrowed pointer to two
crossed double arrows.

e Left-click with the mouse anywhere on the perimeter frame of the chart to move it around and place
it anywhere on the Dashboard window.

e Similarly, left-click one of the handles and drag it to resize the chart. Notice that the cursor changes to
arrows depicting the direction being resized—horizontal, vertical, or both (diagonal).

The chart type “Content” that was introduced above indicates the importance of considering how long to run
a simulation. Had the model only been run for 480 minutes (8 hours), the maximum contents would have only
been about five items, compared to nearly 30 when run for 4800 minutes (80 hours). Different decisions could
have resulted based on the different run lengths. Discussion of this topic - how long to run a simulation - while
very important, is beyond the scope of this primer.

The “Content” chart above also illustrates the dynamics of the simulation. Due to variability and interactions,
the system could behave quite differently in another 4,800-minute time period, just as in the real system,
behavior varies from day to day or week to week. This illustrates the importance of running a simulation model
multiple times, referred to as replications, and combining the results, e.g., through averaging. Discussion of
deciding how many replications to run, while very important, is beyond the scope of this primer.

Both of the above topics — how long to run a simulation and how many times to replicate it — are discussed in
Chapter 10 in the Applied Simulation Modeling and Analysis Using FlexSim textbook.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

8.2.2 Time-series plot by type

The second charting example is also a system-level time-series
chart that shows the contents of the ContainerStorage Queue by
container type instead of just the total of all containers. The chart
is shown in the figure to the right. It again clearly depicts the
system’s dynamic and stochastic nature.

This chart is created like the Content chart discussed above.

Contents of Container Storage By Type

|l 3 W2

@

o N B

30 40 50 60 70

» In the Content panc of the Dashboard Library, sclect the WIP By Type chart type, then select Line Chart

from the pop-up menu.

» Drag the selected item onto the Dashboard workspace whete it can be sized and positioned.

As shown in the figure to the right:
» Rename the chatt to something meaningful, such as Consents
of Container Storage by Type.

> On the Options pane, click the button in the Entrance
Objects section and select Select Objects from the drop-down
menu. Again, this generates a list of all of the objects that are

currently in the model by category.

» From the Queues category, select the object ContainerStorage
so that it is highlighted, and press the Select button. The
ContainerStorage object is now displayed in the Emntrance
Objects section.

» Similatly, on the Options pane, click the button in the
Exit Objects section and select Select Objects from the drop-
down menu. From the Queues category, select the object
ContainerStorage so that it is highlighted, and press the Select
button. The ContainerStorage object is now displayed in the
Exit Objects section.

» As with the Content chart, the only other parameter that
should be changed for now is the Téme Axis Mode property
on the Settings pane. Change the value from the default Show
exact time and date to Show Duration. Also, change the displayed
units from Seconds to Hours.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

Properties X
!
[’ Contents of Container Storage By Type ‘ T:g (7]
-4 i
-] Options 7l |
Entrance Objects
A Xt 3 @
ContainerStorage g
1
1
L !
Exit Objects
! N/ 1
& A Xt 3 09
ContainerStorage
1]
Type Label Type
Value Type Number v
-] Settings ?
Show Legend
Y Axis Scope Range calculated using all data
Y Axis Range Full Range v
[] Time Window Seconds
Time Axis Mode Show Duration v | Hours v
Draw Style Stair Step v
~) Text ?
Draricinn 200 ‘

»2 AUTODESK

» Since there are multiple values being plotted on only one chart, leave the Show Legend box checked (again,
on the Settings pane).

» Position the chart on the Dashboard.
> 'The default settings for all of the other chart parameters are fine for now.

Note that the chart could track the contents of multiple objects over time; e.g., to track the number of items in
the Queue and the Processor, then the Exit Objects would be changed to the Processor, FinishMachine_1.

Also, note that the Type Label value in the Options pane can be any label value on the flow item. In this
example, the Type label is used, which is quite common.

8.2.3 Histogram plot

Process Times at Finish Machines

The third charting example is also a system-level chart, and, as ;;
shown in the figure to the right, it considers the time an item ff,)
spends in the Processor (at the Finishing machine). The time an f
item stays in an object is called “Staytime.” Thus, in this example, 2
the staytime includes the three constant process times (15, 20, | zo0%
and 30 minutes) and the 2-minute setup times when needed, i.e., 3?2
when the item type changes. 20%

0.0%
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

This chart is created like the Content charts described above.

» As shown by the red highlight boxes in the figure to the right, select e —
| @ CutputBy Type &5
:d' Output fHour By Type
| |2 Output By How By Typs

| Staytime

the Staytime chart type in the Staytime pane section of the Dashboard
Library. Then, select the Histogram chart type from the pop-up menu.

. i Staytme —
» Drag the selected chart onto the Dashboard workspace, where it can ¢ ol e
N . | e Staytime By Hour =
be sized and positioned. & Composite Staytme
Bar Chart
| A Composite Staytime By Hour Sl
& Staytme By Type o ﬁ
H L e e
' Staytime By Howr By Type gﬁ ﬂl
7==',< [tem Trace Gantt Hatogzo
| -] Stote
| @ state S %
| g Composite State ol O
ha
Co"c &rdng O.)ects thne ert
tral mach nery 71' i
r Manufacturing 1
" Table

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 7 72 AUTODESK

As shown in the figure to the right:
» Rename the chart to something meaningful, such as Process Times at
Finish Machines.

The only change from the default values is to select which object(s) will
be the subject of the plot. Thus, as shown in the figure to the right:

» Click the button in the Objects section of the Options pane in
the Properties window. Then, select the Sect Objects option.

» Then, select FinishMachine_1 from the Processor section and press
the Select button at the bottom of the interface.

» Since the chart is only for one object, uncheck the Show Legend box
in the Settings pane.

Properties

ik ‘ Process Times at Finish Machines

-| Options
Objects

= S Xt 3

FinishMach_1

Time Units Minutes

=) Settings

[]show Legend
[[] show Labels

The resulting chart, when run for 4,800 minutes, should look similar to the one to the left in the figure below.

While useful, the histogram can be reformatted to be more readable. Of course, the underlying data are not

changed; it is just the way the data are summarized in the chart.

Process Times at Finish Machines

Process Times at Finish Machines
24%
2%
2%
18%
13%
17
1%
3%
5.0%
4.0%
2%
15.00 15.70 10,40 20.10 21.00 22.50 25.20 26.80 23.60 20.20 e A% 16 17 18 16 20 24

22232480 052728309 3

The following two additional steps make the chart correspond to the one to the right in the figure above. The

x and y axes are customized for readability and interpretation.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

The changes are shown in the figure to the right and described below. Fropertes x

Ik ‘ Process Times at Finish Machines ‘ T:g (7]
» Change the scale of the y-axis to display the frequency of the :‘b O'I:io"s L
jec!
histogram as percentages (relative values) rather than the default, the | & # x & & LX)
number of occurrences. To do this, check the box Normalize Values | ™™
on the Settings pane.
» Change the definition of the bars, the x-axis, from a fixed number of
bars (default is 10) to a fixed bucket width. Time Units Minutes v
To do this, again on the Settings pane, change the Bar Mode || settings ?

from By Number of Buckets to By Bucket Wid. For this example, | LSontesend

[]show Labels

change the Bucket Width from the default of 50.0 to 7 (representing | ENomalze Values
: . . [stack Bars
1 minute) and the Bucket Offset, the starting point of the chart, from | g yoge ST o

the default of 0.0 to 75 (the shortest processing time is 15 minutes Budketwidh [0.99 |
with 10 setup) R a—

= 2

Setting the number of bars and bar width for histograms is often
done by trial and error. However, there are some methodologies to help with this; three such methodologies
are available in FlexSinz: Sturges, Scott, and Freedman-Diaconis rules. They are available when selecting the
By Bucket Width property. Discussion of these methodologies is beyond the scope of the primer.

» On the Text pane, change the Precision property value from the default of 2 (2 decimal places) to 0.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 69 72 AUTODESK

The final dashboard should resemble the figure to the right.

The dashboard has been renamed Contents and Process Times since
other dashboards will be created later, and the descriptive name
helps for reference.

» 'Thus, change the dashboard’s name in the text box at the top
of the Properties window.

Note the following about the charts on the Dashboard.

e In the first two plots, the content of the container storage area
is growing over time. This is an obvious indicator that the
system is unsustainable and not feasible since, in practice,
queues cannot continue to grow in size. One solution would
be to add another finishing machine, which will be done later
in the primer.

e The third plot, the histogram of staytimes, verifies the three
deterministic process times by container type (15, 20, and 30
minutes), with approximate frequencies of occurrence of 14%,
13%, and 7%, respectively. The values of 17, 22, and 32 are the
process times by type, including setup times; their frequencies
are approximately 24%, 22%, and 22%, respectively.
Obviously, since the container types are equally likely and not
batched, the setup operation is required more often than not.

&= Content and Process Times " v

Contents of Container Storage

Contents of Container Storage By Type
R 3 W2

Process Times at Finish Machines

24%
22%
20%
18%
16%
14%
12%
10%
8.0%
6.0%
4.0%
2.0%
0.0%

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Also note that the total percentage of Type 1 is 38% (14%+24%), Type 2 is 35% (13% + 22%), and
Type 3 is 29%. (7% + 22%). This is close to the assumption that the products are equally likely to occur.
Of course, they will not be exactly equal to 33.33% for any run due to sampling error. However, over the

long run, the product mix should be equally likely.

This brief example demonstrates that charts provide a very valuable means for verifying and validating simulation

models.

é If you haven’t already done so, save the model. Recall that it is good practice to save often.

—un Use the Save Model As option in the File menu to make a copy of the existing model so that it can be

customized beginning in the next section. Again, you can use any file name, but in the primer, the next model

is referred to as Primer_2.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

9 TASK EXECUTERS

Chapter 9 introduces mobile resources, referred to as Task Executers in FlexSin, and adds a Finishing

Operator to the model.

Task executers (TEs) are mobile or dynamic resources — they move about in a model, typically moving items
between objects. A section in the Object Library, right below Fixed Resources, contains different types of
TEs, including Operator, Transporter, Crane, Robot, ctc. All of these have the same functionality and differ
in how they move; e.g., an Operator can move in any direction (x, y, and z), whereas an Elevator can only
move vertically (z-direction).

TEs can represent complex behaviors, but only the most basic properties and a single type of TE, the Operator,
are covered here. Before discussing how to implement TEs in a FlexSi7 model, a few general concepts are
introduced.

The base model for the additions described in this chapter is Primer_1 that was saved at the end of
Chapter 7. However, a copy of that file was saved as Primer_2; thus we begin with that file.

9.1 Basic task executer concepts

TEs have speeds (and accelerations); therefore, the location of model objects and the distances between them
now become very important.

As the name indicates, TEs execute tasks. Sets of tasks for performing a specific operation, called a “task

b

sequence,” are passed to TEs, typically from fixed resources (Sources, Processors, etc.). FlexSim includes
default task sequences, but as in most things in FlexSim, they can be customized. For now, only default task
sequences are considered. For transporting items, a TE must move items from one object (FromObj) to another
object (ToObj). To do so, by default, a TE executes the following task sequence sent to the TE from the

FromOb;.

Travel from current location to FromObj
Load an item from FromObj

Travel from FromODbj to ToObj

Unload the item to ToObj

Tasks other than travel, load, and unload are available in Flex$77. However, developing custom task sequences

is an advanced topic discussed later in this primer.

Fixed resource objects communicate with TEs via special connections, referred to either as a center-port
connection or an S-connection. It is called a center-port connection because it connects the center ports of two
objects. It is also called an S-connection because the connection is made by holding down the S key while
dragging the mouse between the two objects.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION / 72 AUTODESK

Objects have center ports in addition to the input and output ports that were introduced eatlier. Center ports
are not for item flow but for communications between objects. Communications can be bidirectional between
the objects; this is in contrast to the unidirectional flow between input and output port connections (A-
connections).

A TE will often receive more requests to perform task sequences than can be met at that time. For example, a
TE may receive a request while performing a task sequence. Therefore, TEs can queue requests to perform
task sequences and can use different means to process requests in the task queue, e.g., first-in, first-out, or with
priorities.

TEs not only receive tasks but can also send them to other TEs. Thus, TEs are like working managers — they
will carry out a task-sequence request unless they are busy when they receive the request. If they are busy when
they receive the request, they can send it to an available TE. If all associated TEs are busy, the receiving TE
puts the task-sequence request into its work queue. To implement this, decide which TE is the working manager
and connect it to all associated TEs via A-connections (from the working manager TE to the associated TEs).

If all TEs are considered the same and no one acts as a manager, then a Dispatcher object is used. The only
function of the Dispatcher is to allocate work and maintain the work queue for all of the associated TEs. In
this case, the fixed objects communicate with the Dispatcher and not directly with the individual TEs.
Therefore, the fixed objects are connected to the Dispatcher with S-connections through their center ports,
and the Dispatcher is connected to each TE with an A-connection (from the Dispatcher to the TE).

By default, a TE travels between objects in a straight-line path, traveling the shortest distance between two
objects. A TE’s default travel path does not consider other objects in its path. However, there are several
alternative means to control the travel path of a TE — one uses path networks, and another uses the A*
algorithm. Both approaches are discussed later in the primer.

9.2 Adding a finishing operator to the model

Begin with the basic model from the previous chapter, named Primer_2.

Since more than one finishing operator may be needed, use both the Dispatcher and Operator objects.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION / 72 AUTODESK

» Drag out a Dispatcher object from the Task Executers
pane of the Object Library to the modeling surface. As
shown in the figure to the right:

e Name the object FinishOperators.

e The object will be more precisely located later, but for
now, set (x = -9.0, 9 = 0.0, g = 0.0). This object can
be placed anywhere, but this is a convenient location
for now. It also illustrates another means to position
an object in the workspace instead of dragging it to a
location.

e Resize the object using the size settings x = 7.0,y =
1.0, and g = 0.7. This minimizes the object’s presence
since the Dispatcher object is not an actual entity in
the system.

v X |Properties
FrushOperators

1] Statstics

1] Template

=] Visuals

| fs3d\Other Dispatcher 3ds

[31 0.00 }: 0.00

] + 0.00]: 0.C0

re | 1.00 [Loo [s10.10

More Veudls
=l Labels
rLaXtis

O Astamatcaly Reset

=l Dispatcher

Pags To

First Availsbie

Queus Strategy

sort by TaskSequence Pronty
<) Ports
-] Triggers

The Queue makes requests of the Dispatcher, i.c., it sends task sequences to move items from the Queue
to the Processor. The Dispatcher then sends the request (task sequence) to an Operator that it manages.

Implement this aspect in the model as described below.

> As shown in the figure to the right, make an S-connection
between the Dispatcher and the ContainerStorage Queue by
holding down the S key, selecting the Dispatcher so that it
is highlighted by a yellow box, dragging the mouse to the
Queue, and releasing once the Queue is highlighted with a
yellow box.

There should be a connection between the two objects’
center ports, as shown in the figure to the right. When
making center-port connections, the order of connections
is not important since it involves bi-directional
communications; i.e., the connection can be made from the
TE to the fixed object or from the fixed object to the TE.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

FinishOperators

E————
FinishOperators

»2 AUTODESK

» Select an Operator object from the Task Executers pane of the Object

Library . Note there are various types of Operators to choose from - they [Z7., 4w
are functionally the same and only differ by appearance. The appearances e 5
can be customized, but that level of detail is not considered in this example. [®== ?
Therefore, any Operator type is fine, but the primer will use the Mate. P &
[saparater
» Drag the Male image to the modeling surface. At the moment, it can be pmi e
placed anywhere. e ,!
g TaskExpcuter &5 {
'; Cperator o
» Name the object FinishOperator_1. I
& Raver Fiamen
» Make an A-connection from Dispatcher to FinishOperator_1 by holding i
. . P . . =) Travel rics
down the A key, selecting the Dispatcher so that it is highlighted by a s
.) TrafficContro
yellow box, dragging the mouse to the finishing operator, and releasing it -
once the Operator is highlighted with a yellow box. 5
As shown in the figure to the
right, there should be a m{’
connection between the
Dispatcher’s output port and 2 i
the Operator’s input port. A rex v
. . [Eroup Moue J Sae / Rotate Oosrabon U Lecacy
Ensure the connection is from)
the Dispatcher to the Operator FiniSOhOpetra:)orJ
. o utput:
since it is a one-way flow of Siad= ot
information.

Now that all of the objects can communicate, the Queue needs to be able to send a task sequence to the
Dispatcher, telling it what to do. In this case, the Queue requests the TE to transport an item from the
Queue to the Processor (FinishMachiune_T). This is accomplished as described below and shown in the
figure.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION #2 AUTODESK

» On the Output pane of the Queue object (ContainerStorage),
check the Use Transport box as shown in the red box in
the figure to the right.

T ———
$ Contanersicage =17}
The default routing logic, the Send To Port property’s value B 25t
. . . R =) Template s
First Available, 1s fine since now there is only one object — | -l Visuals “li
W | f=3d\QueueQueue. 3ds - p

downstream from the Queue, which is the Processor.

=3 1% 2000
&

By default, the task sequence goes to whatever object is

5 |0.00 ¢ 0.00 |slo.c0 ‘
connected to the Queue’s center port; in this case, that is v [200 i 200 |s[0.20 =
the Dispatcher. This action is accomplished by the default hcee s

. . . =) Labels Pl kg
Use Transport property value, which is the FlexSim 5
command current.centerObjects[1] This command is o s
interpreted as the object connected to the current object’s Freavokie ras
. . . [Use Transpeet
first center port. In this case, the current object is the warrentsentarObjeeli) v S QL
Queue, and the object connected to its first center port is ooty Frcempton

| 0 Do Mot Preempt W
the Dispatcher.) tnput K

=] Groups ?

=] Ports ?
Once the Dispatcher receives the task sequence, it sends it to ERLLE d

the Operator when the Operator is available.

» Verify that all the connections and settings are correct by pressing the Reset and Run buttons and
observing that the Operator picks up a container in the Queue and transports it to the Processor. This
call for transport occurs when the Queue’s downstream object, the Processor, becomes idle and is

available to receive the next item to process. Such an activity is shown in the figure below.

ag Output: 17
CurContent: 3 Status: travel loaded
MaxContent: 4
AvgStaytime: 15.4

FinishMach_1

CurContent: 0

MaxContent: 1
AvgStaytime: 22.9

You may need to slow down the model’s speed to see this (e.g., Run Speed = 0.1) or stop the model as a
transport occurs.

» Obsetrve the Operator’s behavior — after unloading the container onto the finishing machine, the
Operator waits at the Processor until it receives the next task from the Queue, which currently is its
only source of tasks. The Operator waits at the Processor because the default task sequence (Travel-
Load-Travel-Unload) discussed earlier is being followed. Once the container is unloaded, if the Operator

has no more task sequences waiting, it becomes idle where it is, at the Processor.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

If the Operator’s only task is to move items between the Queue and Processor, it might make sense to
change the model’s logic so that the Operator returns to the Queue once a container is loaded onto the
Processor. This is easy to do but may not be what happens in the real system. In this case, the Operator has
other tasks.

The Operator also needs to perform the setup operation at the finishing machine. This is done similatly to

the process just described. As shown in the figure to the right and Froperties x
. . FinishMach_1 ?
as described below, modity the Processor as follows. o [Frisrtiech_ 1=+ te 9
+] Statistics 2 ?
+| Template & ?
» On the Processor pane, check the Use Operator(s) box below 4] Visuals)
the Setup Time property. | |+ Labels 22
=| Processor (a9
» The value of the Operator property, near the bottom of the RaxContent B4 nimate Items
Processor pane, remains the default. current.centerObjects[1] Situp Time P
. . . If ITtem Label Changes min v % 3
The Processor will use the object connected to its first Center e
. . . . Use Operator(s)
port to do the setup operation, which will be the Dispatcher.
Process Time
Values By Case
» Make an S- or Center connection between the Processor and [use Operator(s)
the Dispatcher. T
current.centerObjects[1] vy &5 & /'
Priority Preemption
0 Do Not Preempt v
-] Output &y ?

Since the performance of a system depends on speeds and distances, the Operator and other Task Executer
properties are important. The default value for an Operatot’s speed is 120 meters/minute. This seems a bit
fast for this operation since the average walking speed is about 84 meters/minute. Therefore, use a value

somewhat slower than the average walking speed, 60 meters/minute.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION / 72 AUTODESK

» As shown in the figure to the right, change the Max Speed Properties X
value on the Travel pane of FinishOperator_1 from the default | % |Finishoperator_1 |1 12 @
of 720 to 60. +] Statistics 22|

+] Template Eay 9

+| Visuals &y ?

. . . . el

Also, consider the time it takes to load a flow item at the B 750

.. +] Person Visuals ?
originating object and the time to unload an item at the

. . . . +| Operator Help %5 2

destination object for a transport task sequence. The default ime |- g0 000)

1s 0.0.)

» In the TaskExecuter pane, change the Load Time and Lond T

0a ime

Unload Time property values to 0.05 minutes (3 seconds). 0.05 min v 2
Unload Time
0.05 min v
Break To
New Tasksequences Only v & &
Fire OnResourceAvailable at Simulation Start
-] Travel “n 2
Max Speed m/min Rotate
Acceleration m/min/min
Deceleration m/min/min
Flip Threshold 180
Navigator ’ Default Navigator v X
Travel offsets for load/unload tasks v

By default, Task Executers travel “offsets” when loading or unloading items. This means the TE travels
inside the object that contains the item in order to load it. In this example, we have the Operator travel to the

end of the object and not go inside.

» As shown in the figure to the right, use the dropdown menu %, [Finishoperator_1 |1 12 @
to change the last property in the Travel pane to Do not travel |1+ 52858 72
offsets for load/ unload tasks. E e j: L

+| Visuals &y ?
+| Labels 7 ?
+) Person Visuals ?
+| Operator By ?
+] TaskExecuter 2y ?
-] Travel &y ?

Max Speed 60.00 m/min Rotate

Acceleration 3600.00 m/min/min

Deceleration 3600.00 m/min/min

Flip Threshold 180

Navigator ’ Default Navigator v X

Do not travel offsets for load/unload tasks

Travel offsets for load/unload tasks
Do not travel offsets and block space on networks
Use navigator for offset travel

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 77 72 AUTODESK

Since the Operator object is mobile, it can be anywhere on the modeling surface when a running model is
stopped. This location will be where the Operator starts when the model is run again.

For consistency in comparisons and analyses, having the task executer start at the same location each time a

model is reset and run is good practice.

Therefore, in this case, set the location of the FinishOperator_1 near the Finishing Machine and the container

Queue.
. Propertes x
» As shown in the figure to the right, use the button on the 8, [Fnshoperator_1 ETN7)
Operator object’s Triggers pane to add an On Reset trigger, -] Statistics E,
then select the Sez Center Location option. | Template e
+) Visuals e ?
- Labels 232
» Change the default location values X Location from 0.0 to -9.5 | = Fersen Visuals 5
))) < Operator -
and Y Location from 0.0 to 1. Z Location remains 0.0. et RS
) Travel e =
=) Dispatcher o ?
= Ports ?
Now, the Operator moves to this location whenever the Reset | -l Triggers ?
button is pushed. To verify this: o
Cn Reset
[
" “ setcentertocaton | i
» Reset and Run the model. Note that the Operator returns to e .
. . Object current - ¥
the same location when the model is reset.) *
Xlocamon -9.5 - J'
YLlocation 1 v ’O
Zlocaton U - "

If you haven’t already done so, save the model. Recall that it is good practice to save often.

We now have a basic model of the unfinished containers arriving at and being processed at the Finishing Area.

gn Use the Save Model As option in the File menu to make a copy of the existing model so that it can be
=]} customized beginning in the next section. Again, you can use any file name, but in the primer, the next model
is referred to as Primer_3.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION / 72 AUTODESK

10 BASIC LOGIC WITHIN THE PROCESSOR OBJECT

this chapter does not add features and capabilities to the primer model.

Chapter 10 examines the Processor's operation, which is one of the basic 3D objects. It is meant to
help the reader better understand what is happening behind the scenes in the basic 3D objects. Thus,

Before discussing additional types of objects, this chapter provides a glimpse of what happens inside an object

from the time a flow item enters it until it leaves. Note that this section is not required to build and analyze

models in FlexSim; therefore, it may be skipped and revisited later. This chapter is for the users who want

to peek into what is happening “under the hood.”

Each FlexSim object contains the logic to petform tasks corresponding to a real system's operational functions.

The Processor object is used to illustrate what happens to a flow item and an object as an item passes through

the object. Recall that the primary purpose of a Processor is to invoke a planned delay on items flowing through

a model.

Every item flowing through a Processor is delayed by
the value specified by the required Process Time property
and the optional Setup Tzme property. The default times
are 70 and 0, respectively. Specifying how the values of
these delays are determined is set via the dropdown
menus highlighted by the small orange boxes in the figure
to the right. The orange lightning symbols will represent
these two properties in the next figure. Checking the Use
Operator(s) property box may increase the time an item
spends at the Processor, especially if the required
operator is a resource shared with other objects and thus

must travel to the Processor when needed.

FlexSim objects contain the means to specify optional
actions that can be performed on items as they flow
through an object, and a specified set of conditions
occurs in a simulation. These optional actions are called
“triggers.” The triggers on a Processor object are shown
in the figure to the right. The purple lightning symbols
will represent these actions in the next figure.

While each object type is unique, they do share common
actions. For example, a modeler may want to change the
color or shape of an item when it exits an object; in this
case, the On Exit trigger would contain the information
needed to cause an item to change when it leaves an
object.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

g
: ﬁ Procesge
h

———

W

~— et +| SEAbete=
o) Templale

Pros—wor
Ouput: [) Visedls
fictie: 04 1 Lahels

e Proneacaing 5 <

Vaw Coror

ST

s =zeratze(s)
Progss T

Dl ceeratze(a)
o) Oatput

+| Tnpart

) Purls

-1 THOgers

At

E — i Firves
Qr Frocess Fnse
Qr Ertay
Q2
O Draw

O Srw Do
——— i apept

Or Necrage
QrSmuaton St
Pk Tffact
P Sffant
0= Jtzp
O Spnime

tizvewte Chanze
I

Loy e

»2 AUTODESK

Many triggers are common across most objects, such as On Entry, On Reset, ctc. However, the On Setup
Finish and On Process Finish triggers are unique to the Processor object.

The ﬁgure to the fight shows when On Message On Reset
various triggers “fire” in an object as an ﬁ y
item flows from left to right over time. .
]] time
To keep the explanation simple, not all >
possible triggers are discussed here. On Exit
On Entry y
The first trigger to fire when an object 8 Sendto] | 2
. . .) Port 2 flowitem
becomes empty and idle is Pull from flow item a0 by
.. . . = OnS On Process 2 —S—)
Port. This is used to decide what item =— £ [hten i £
5 Fln[Shﬁ Finish V 5
to process next in a “pull” system, Pull
which will be discussed later in the from Por V ¢7 Use
. Transport
primer.
Center ports
Therefore, from our current (Communication - send/ tasks, information, etc.)

perspective, the first trigger is Omn

Entry, and the last trigger to fire is On Exzt. As the names imply, the user can take action when an item enters
and leaves the object. Example actions could be changing the item’s or object’s color or getting or setting a
label value. Of course, the do-nothing option is the default.

The orange lightning symbols in the figure above represent property values, the Sezup Time and Process Time, that

are set as an item moves through an object.

The purple lightning symbols above the timeline, Oz Message and On Reset, are triggers originating from an
external source, not initiated by a flow item. One way for objects to communicate with each other is via
messaging, so the On Message triggers are the actions performed when an object receives an external message.
Messaging is a more advanced topic and is not discussed here. Another external trigger is On Reset, which fires
when a model is reset. In this case, an action might be to return an object’s color to its default. If an object is
normally green but changes color to red when it is the breakdown state, then it needs to be set back to green if

the simulation ends with an object in the down state.

The following figure illustrates the most common activities and delays in a Processor object and the order in
which they are incurred. In this case, the Processor’s assumed maximum content is one. A Processor can
process multiple items simultaneously, but the default is one item at a time. The black horizontal line in the
middle of the figure indicates the passage of simulated time. The red arrows on the figure's left and right show

a flow item’s entrance and exit, respectively.

The optional triggers that cause custom activities to occur, such as On Entry and On Setup Finish, are shown
in purple at the bottom of the figure. The triggers spawn the actions shown in blue at the top of the figure.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

If needed:

Determine setup time Determine process time Release process operator, if needed
Request operator Release setup operator, if needed Select output port for downstream object
; petator, if o
. * Request process operator, if needed
& . E Downstream object available
ALE Request transport, if needed
Object 4 -,' | A—)
Events & ’ e e
Activities) ohfeat ke avallanta T'ravel to object when available
%
B ————. %% 5848858858 %h 8 88 8 8888888080 0000800008 .
- R : = Wait for :
Flowitem arrives at the Wait for 2 = R Timeto ° o
Processor from an serup & Sewp D process Wait for ! loadio || Flowitem leaves the
o operator & Fspenine Process time downstreamn (f 3 ;] Processortoa
upstream object (cither P(ir G 3 if object to be b tmanspore .
pushed or pulled) = _';= needed) = needed) v available ; needed) 1% “ {if downstream object
— Time - i y Y i - Time _)
= — - -
Oblect T3 Wait for I Wait for I ey Wait for next I Wait for I Load Idle I
States operator T operator ob]ecx
Object On Entry On Setup On Process On Exit
. of flowitem SIS Finish of flowitem
nggers Finish s

A quick narrative of the figure is provided. When a flow item enters an object, it is determined whether a setup
is needed. If it is, a setup time is determined. Next, it is decided whether an external resource, such as an
operator, is needed to perform the setup. If the setup requires an external resource, the flow item is delayed
until the resource is acquired and travels to the object. The item is then delayed for the duration of the setup
time. When the setup is complete, the On Setup Finish trigger is available to perform other actions if the
modeler needs it.

Once the setup activity is complete, the processing time is determined, e.g., it may be a constant value or a
sample from a probability distribution. Next, it is decided whether an external resource, such as an operator, is
needed to do the processing. If the process requires an external resource, the flow item is delayed until the
resource is acquired and travels to the object. The item is then delayed for the duration of the processing time.
When the processing is complete, the On Process Finish trigger is available to perform other actions if the
modeler needs it.

Before an item can be released from the Processor, its downstream object must be available. Thus, if the
downstream object is not available, the item waits in the Processor until the downstream object is available.
Once available, it is determined if the item needs to be transported to the downstream object. If so, a transporter
is called, and the item waits until the transporter arrives at the object. The item usually must be loaded onto the
transporter, which is another delay in the Processor. Once loaded, the item exits the Processor, and the On
Exit trigger can be used to perform additional actions. Once an item has exited, the Processor can accept
another item if one is waiting to enter. If no item is waiting to be processed, the Processor goes into the idle
state.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

The figure above illustrates how a flow item can be delayed for a much longer time in a Processor than just
the duration of the Process Time. The case where an item is only delayed by the process time is shown in the

figure below. In this case, no setup is required, no other resource is needed for processing, the downstream
object is available, and no transport to the downstream object is required.

Determine process time

A
Object
Events &
Activities
Flowitem arrives at the i)
Processor from an Flowitem leaves the
P CCSS R
upstream object (either Process time Processorto a)
pushed or pulled) downstream object
— Time NL Time »
Ob'CCt | Idle " Processing “ Idle
States

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

PART III - FURTHER DEVELOPMENT OF THE FINISHING AREA

The model of the Finishing Area is enhanced by changing object graphics and routings and introducing some
of FlexSin’s many modeling support tools.

Chapter 11 changes the Finishing Machine and Container Queue graphics and employs new item routing
rules. It also introduces model views.

e Chapter 12 uses the Empirical Distribution tool to define the product mix of containers entering the
Finishing Area. It also uses the Empirical Distribution tool to fit system data to a probability distribution
that best describes the arrival process of containers to the Finishing Area.

e Chapter 13 introduces two types of data tables that help organize information used in Flex:Siz models:
Model Parameter Tables and Global Tables.

e Chapter 14 adds several types of downtime to the model. Break and lunch times are added for the Finishing
Operator, i.e., when the operator is unavailable to do system work. Two types of downtimes are considered
for the Finishing Machines. The first is a quality check that occurs on a fixed clock-based schedule; the
second is randomly occurring breakdowns that are based on the object’s state. Machine breakdowns require
a Finishing Operator for repairs; the quality checks do not require an operator. Pie charts are introduced
to summarize the utilization and percentage of time the Finishing Machines are in various states. The charts

are added to a new dashboard.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3: 72 AUTODESK

11 CUSTOMIZE OBJECTS TO REPRESENT SYSTEM BEING MODELED

Chapter 11 changes the Finishing Machine and Container Queue graphics and employs new item

routing rules. It also introduces model views.

This section discusses various topics and changes that further customize the model to better represent the
planned production system. These include:

e Change the finishing machine graphic to make it look more like the machine in the real system.

e Create a second finishing machine.

e Change the shape of the queue from upstream processes.

e Implement an initial decision rule for routing items to finishing machines. This will later be changed to a
multi-criteria decision — the shortest processing time but with a wait time threshold.

e Implement a decision rule for routing items based on current conditions, e.g., if a buffer is full, then where
should an item be sent?

e Change to a more general distribution for the mix of containers by using an Empirical probability
distribution rather than the Discrete Uniform.

e Set views and toggle between Working and Presentation views.

The base model for the additions described in this chapter is Primer_2 that was saved at the end of
Chapter 9. However, a copy of that file was saved as Primer_3; thus, we begin with that file.

11.1 Changing object graphics

While a 3D shape can be created to represent any system object, many such shapes are readily available. For
example, 3D Warchouse (https://3dwarchouse.sketchup.com) contains millions of 3D objects that have been
created in the 3D modeling software SkezchUp.

Here are a few comments about SkezhUp and using shapes developed in SkezchUp in FlexSin simulation models.

Of course, FlexSim can use a variety of 3D file formats. For the latest list and more information on importing

3D graphics into FlexSim, see the “Creating and Importing Custom 3D Objects” section of the FlexSim User

Manual.

e Shapes from 3D Warehouse can be downloaded for free and used in FlexS77. Unless the user modifies the
shapes, Sketchup itself is not required, just the .skp file.

e Since file formats change often, it is best not to use the latest version of the format since it may not be
compatible with FlexSim. Therefore, downloads should be in SkezchUp file format 2022 or eatlier.

o SkerchUp is now a web-based application, but older versions are available at the SketchUp Help Center
(https:/ /help.sketchup.com/en/article/60107).

e The size of the SkezchUp model, especially the number of polygons, affects the FlexSim model size and its
run time. Therefore, very complex graphics should be avoided unless they are really needed, and the model
is run on a powerful computer.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

https://3dwarehouse.sketchup.com/
https://help.sketchup.com/en/article/60107

11.2 Changing the Finishing Machine’s (Processor) graphic

The shape of the Finishing Machine is changed from the default FlexSim graphic to the graphic in the SkezchUp
tile named FinishMachine.skp. The process for doing so as described below and shown in the following figure.

» In the Processot’s Properties window and Visual pane, select the More Visuals button, which is
highlighted by a red box in the righthand portion of the figure. This opens the Visuals window, as indicated
by the arrow in the figure.

> Select the second dropdown menu button below Appearance; it is to the right of the textbox containing
f53d/ Processor.3ds, which is the path and file name for the default Processor shape.

> Select the top option, Browse..., in the dropdown box.

» Use the Browse option to search your computer to find the SkezchUp file. In the example in the figure below,
the path Resources/ FinishMachine.skp indicates the Sketchup file FinishMachine.skp is in the folder Resourees,
which is in the same location as the Flex:Sizz model.

By default, in FlexSim, the graphics media are embedded within a model so that the model can be
copied and shared without having to provide the external graphics files.

As shown in the dashed-line red box in the figure below,

» Change the location propetties to x = -6.5, y = 1.5, g = 0. The object could have been placed in the correct
location by moving it manually on the layout.

» Change the object size properties to x = 3,y = 3, and g = 2.5. All values are in metets; i.c., each machine
is three meters square and 2.5 meters high.

PN Visuals
Appearance

3D Shapes

FinishMach 1

0 - Base Frame >

lRt{u_n es/FinkshMachine. skp

Shape

3D Texture

Visuals/Animations Load

Eot Browse..
Bax 3ds

o Cylinder 3ds >

Plane 3ds

Sphere 3ds

Fixed Resources

Task Executers

Finish:

-0
MaxContent: 0
AvaStavtime: 0.0

- [
Flags
/1Show Name
; Show Ports
[“iShow 30 Shape
[Z1Show Contents
[IScale Contents
Protected

No Select

[CJFrustum Culling

v X Properties

o FinistMach_t b N
</ Statistics 77
: Template % 7
| Visuals - 4
W Resources/FinishMachine.skp -’
-
— T —
' X Y r4 I
6.50 {1 50 0.00 : I
: (5 0.00 2l0.00 =1 0.00 =
o e A Rl SR - L D
More Visuals
- Labels 7%
Faxtix
Automatically Reset <4
— -l Processor *7?
Max Content 1 Anmate Items
Setup Time

If Item Lahel Changes
Mluse operator(s) 1

Process Time

Valses By Case

[TJuse Operator(s)
— Operator
current. centerObjects(1]
Priority Preemption
0 Do Not Preempt
| Output
Send To Port

min v S22
min v 3 & *
¥

s
=% ?

The Processor should now look like the image in the circle in the figure above.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Another Finishing Machine is needed since the average input rate is equal to the average processing rate;
therefore, it is a good time to add it now.

» Copy FinishMach_1 using Cntl-C shortcut key combination, then click on the layout near where the
machine will be located and paste using the Cntl-V keyboard shortcut. This is a common way to copy and
paste in most Windows applications. Alternatively, an object can be selected, right-clicked (click the right
mouse button), then select Edzt, and then either Copy or Paste.

When copying and pasting objects, it is best to copy (Cntl-C), then click on the modeling surface
approximately where the new object is to be located, then paste the copied object (Cntl-V). If you don’t
click on the modeling surface, the pasted object may become a subset of the copied object. This is a good
feature in some cases, especially where you want to build sub-models, but that is a more advanced topic.

» Rename the copied object as FinishMach_2 and place it in the proper location on the layout (x = -6.50,y =
-2.40,and g = 0.0).

» Make the flow and communications connections:
e A-connect from the Queue named ContainerStorage to the Finishing Machine.
¢ A-connect from the Finishing Machine to the Sink named Nexz#Process.
* S-connect between the Dispatcher (FinishMachines) and FinishMachine 2.

» On both finishing machines, uncheck the Anzmateltems box at the top of the Processor pane next to the
Max Content property. By default, items move across a Processor as they are being processed; however,
in this case, containers are processed at a fixed location in a Finishing Machine.

Items can remain static on a Processor while being processed by unchecking Anzmate Items on the Processor
pane. Checking or unchecking the box is for visual purposes only and does not affect the model’s behavior;

i.e., the processing time is the same whether or not the item is conveyed across the object.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

11.3 Changing the Container Storage’s (Queue) graphic
Next, the Queue or ContainerStorage object is customized. Its shape is changed to a Plane, which is a basic 3D
shape that comes with FlexSiz. The process is similar to changing the graphic on the Processor in the previous

section. Refer to the figure below and the instructions that follow.

S Visuals - ContainerSiarage C x a ConlainerStorage h U
Aopearerce Aags 1) Statistics e N
a0 Shapes (1 - Bose Frame & []Show Name | Template w ?

g - | ' ™
lli’{ﬂ.‘.".»rsml-'lnr.:(ks 52 l" 32 [lshow Rarts | Visuals -]
|| Show 30 Shape W [23d/GeneralPure 3ds =it
Shape BE ComT <
Box.3de | |Show Cortents - 2
30 Texture Cylinder.3ds -7 SN — e - - — -
<y 3ds | |scale Conterts i]
y e 5 105 <3 - -
VisLsalsTANImatioTs. Load Hﬂnﬁ-“!‘ [Jprotected I‘ 10.50 =1-3.50 210,05 s '
Sphere.3ds S AT 5 000 =0 10,00 2
Fixed Resources [CIne Sekact I -2 I
— A T L0 1800 *ul =
lask Executers 4 [CIFrustum Cuting ' 7 Al
More Visuais
T VP YR

s T = Labels P -

vaxnt s

ContainersArrive /
Output: 0 3 >

Blocked: 0.0% = g & L s "
__—~—FihishMach_1 =
Finish e CurContent: 0 LLIFD
in MaxContent: 0 | |orform Betching

! AvgStaytime: 0.0
! | Output x* ?
3 | Serd To Part

~J First eveilable v 2/

[CJautornaticalty Reset y
-| Queue ~

Max Contene L

[iwin Plcerery. Hormootzl Line

[Alus= Transoort
sl bbbt s o &

» In the Queue’s Properties window and Visual pane, select the More 1 isuals button, which is highlighted
by a red box in the righthand portion of the figure above. This opens the Visuals window, as indicated by

the arrow in the figure.

» In the Visuals pane, select the second dropdown menu button below Appearance; it is to the right of the
textbox containing fs3d/ Quene/ Quene.3ds, which is the path and file name for the default Queue shape.

> Select the fourth option, Plane.3ds, in the dropdown box.

As shown in the dashed-line red box in the figure above,
» Change the location propetties to x = -10.5, y = 3.5, g = 0.05. Again, the object could have been placed in

the correct location by moving it manually in the 3D workspace.

> Set the object’s size to x = 1.7,y = §, and g = 0.07. Note that the x value should be set slightly larger than

the container size so that the container will fit.

If a Queue’s size is less than or equal to the size of an item that is trying to fit into the Queue, it will not fit;
as a result, FlexSim will position it outside of the Queue. The logic will not be affected, but it will look strange.

»2 AUTODESK

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

Change the object’s color, in this case, to light yellow.
» Select the object’s color dropdown box in the Visuals plane, as

highlighted by the red box in the figure to the right. This opens many
options for color — selecting one of the thumbnails, setting the RGB
values, or more options through the More Colors button. In this case,
select the lightest yellow color from the thumbnails.

Of course, the color does not affect the system’s behavior or
performance, but it may help with validation. For example, if it is
standard practice to paint floor storage areas yellow, then this change
helps stakeholders identify with the model.

Reset and Run the model and observe the queueing process.

The containers likely queue up, as shown in the figure to the right, and
thus do not conform to the shape of the storage area. This is because
only the general shape of the object has been changed; logically, items
still queue in a horizontal line from the front of the object to the back
of the object and beyond. Basically, items line up from right to left.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

Properties

s ContainerStorane h

+/ Statistics 2 ?

1) Template . i |

-1 Visuals *?

W fsidiGeneral/Plane.3ds - 7
v

x HH EEEN

" 10, :

7 0.0¢ s

e [TT]1 01 -

Coeer | ENNNNY > - -,

= Ques Mora Colors... %17

Max Content 50

Item Placoment Horzontal Line

Stack Base Z 0.10 m

Furo

[CIParform Batching

= Outpat ¥

x
o

~

7

Finish

T,

COntain!S(orage
CurContent: 4
MaxContent: 4
AvgStaytime: 16.8

»2 AUTODESK

To correct this, make the following changes on the Queue’s Visuals pane. The | iepeses .

revised properties are shown in the dashed red box in the figure to the right. 2 tassaciadania g e
Statistics o
Termpate s ?
» Rotate the Queue 90 degrees about the z-axis so that it is vertically oriented Viauai 7
and not horizontal. Set the g rotation to 90.0. 9L PN metelbiace A
- ”
. P AN e e Ve e e e ..
» Since the item is now rotated, reverse the sizes in the x and y directions, i.e., o 10 2o o0 1
x=38.00andy = 1.70. I»' e - boras ‘A
" oA * L0 L LS ~

. t - - - s " - - l
> Since the size and rotation have changed, the object needs to be repositioned; et

A 3 Labeis 7’71
ie., set the locations to x = -70.5 and y = 0.00. S uX Pt S
ALEOT NGO Wt
s 7
Mas Contert
Iresmy PAacerert Mool Line

ok Dawe 7

o

Soere Narcmeg

Outpst = 7
Serd To Pont

Pest swalabse - L4

» Reset and Run the model and observe the queucing process. It should
resemble the figure to the right where the containers now line up as expected.

This change may appear to be only for appearances, but in this case, the queue
orientation will affect estimated system performance. When an operator moves
containers from the storage area to the machines, the location of the containers

to be moved will affect the operator’s travel time and, thus, performance.

\ i T — ishMac
\ F Z r/-‘ CurConter
X Ly iiul MaxConter
S AvgStaytime
\
N\
\\
N\
N\
\
N
\

ContdinerStorage
CurContent: 4
MaxContent: 4
AvgStaytime: 16.3

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Notice a small cubic icon to the left of location parameters in the Visuals pane of

an object’s properties. Clicking on the cubic icon will display the window shown @ @ ﬁ E*j
to the right. FlexSim provides the different possible object reference points shown ' |

in the figure. The default reference is the midpoint of the object’s bottom surface. @ 6 @ I\'?]
| -)

For example, if the location parameters are specified as x = 10.0 and y = 2.0, then || - edge mid points

the center point of the object’s bottom surface will be located at (10, 2). The @ P] @
N

reference point for the object can be changed by clicking on the icon of the desired

reference point. @ Qj @ @

N
In most cases, the default works fine, and the default location reference will be @ @ @ \._.J

= Planar Mid Points

used throughout the primer. This feature is introduced to raise awareness and @ . K
illustrate the “flexibility”” of FlexSin. @
Ny

Center

\

_ Direct Spatials

"4?‘.

The Source (Containers Arrive) and Sink (Next Process) shapes and sizes are not changed. Since they are just
boundaries and not physical objects in the real system, they can be moved anywhere in the model view, or they
can be minimized.

11.4 Item routings

Routings are a key part of modeling process flows. As items flow through a system, they may follow different
paths due to the current condition or state of a system. For example, different paths may be followed depending
on the type of object, the availability of a resource, the perceived waiting time to secure a resource, etc. Paths

may also change randomly, such as a customer choosing between two available servers.

Eatlier in the simpler model, all items (containers) followed the same routing path — they all flowed through
the four basic objects in sequence: Source to Queue to Processor to Sink. But now there are two Processors
(finishing machines) in parallel; i.e., an item can go to either one. Thus, there is a routing decision in the Queue.
Also, since the capacity of the Queue is limited, there needs to be a routing decision at the Source — either go
to the Queue or somewhere else if the Queue currently has no remaining capacity. Both of these behaviors

are considered in the next two sections.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION (72 AUTODESK

11.5 Choosing a routing based on availability

The Queue for storing containers awaiting finishing has
the option of sending a container to either finishing
machine 1 or 2. For now, the default setting,
FirstAvailable, is used. The routing logic is controlled at
the Send To Port trigger on the Output pane, as shown
in the figure to the right. Note in the figure that the
dropdown menu offers many routing options to move

items from the Queue to one of the machines.

The First Available option works as follows. When an item
is ready to leave the Queue, it checks to see if the
downstream object connected to Port 1 is available to
receive the item. If it is, then the item is sent — in this case,
the item leaves the Queue and arrives at the first machine
in zero simulated time. Recall that by default, it takes no
time to move from object to object in a model. If the first
machine is not available, then the Queue checks to see if
the downstream object connected to Port 2 is available to
receive the item. If it is, then the item is sent — in this case,
the item leaves the Queue and arrives at the second
machine in zero simulated time. If both machines cannot

v X Properbes
b ContensSiorags
4 Statistics
4 Template
| Visuals

W | fx3d/GeneralPlene. 3ds

% 0.00

™ |8.00 5 110
vere Usans
.I". 2l Labels
X 4 Queve
N | Output
\ Send To Part
Frat avaable

\ 7 55 Parameter

By Expression

b Queue Size
Random

Raund Robin

Vo y Case
Conditional Port

"4 = 7 By Global Tsble Lockup
Matching ftem Label
By Time of Day

Do Not Relesse Item

) +1 ProcessFlow: Execute Sub Flow

Compare Properties M =5 7

accept the item, then the item waits in the Queue until one of the downstream machines becomes available.

Note that the port connections between objects drive routing decisions since they set the order for

checking downstream objects for availability.

Using the FirstAvailable routing logic usually results in the object connected to the first port receiving more

items since it is always checked first. Similatly, the object connected to the last output port will receive the

fewest items.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

11.6 Choosing a routing based on current system conditions

The container storage area has a limited capacity (Maximum Content’s property value on the Queue is 50).
Therefore, provisions must made for the condition when the Queue is at capacity and cannot accept any more

containers.

If nothing is done, items will be backed up in the Source and are not released until there is space in the Queue.
Other than the Source statistic Blocked, this hides the fact that there is insufficient capacity in the Queue. In
the real system, if there is no place to put arriving containers, they must be dealt with. Thus, exceeding capacity
needs to be addressed, even if just by tracking how often this occurs.

To provide a means to track this condition, divert containers to a second Sink, named ReDirectedContainers, it
the Queue is full. Thus, no action is taken if capacity is full, but it will be noted when this occurs. Implement
this in the model as described below.

As shown in the figure to the right:
» Drag a Sink object from the Object Library onto s
the modeling surface and name it ReDirectedContainers.
» A-connect the Source to the new Sink.
As shown in the figure to the right, there are now two \
output port connections from the Source, one to the °n(t;’li,?euf:A6rive\\
Queue and one to the second Sink that was just created. ﬂ‘l@&ﬁ{i:
As described earlier, the default decision rule for routing, ;—'f_— '
FirstAvailable, 1s used so that items go out Port 1 to the . \
Queue if there is available capacity and go out Port 2 to Ir?;l:?nltd - \\
the Sink if the Queue is full. \
ContainerStorage Finish
g CurCor
MaxCo
AvinCtan

Note that if the connections are reversed, the model would behave differently. If the Source and Sink are
connected through Port 1 and the Source and Queue through Port 2, then all items would go to the Sink, and
none to the Queue since a Sink has no capacity limits. Therefore, it is important to be careful about the order
in which objects are connected.

L]
If you haven’t already done so, save the model. Recall that it is good practice to save often.

»2 AUTODESK

11.7 Creating model views

When the modeling surface is clicked and not an object, the Properties window controls what is displayed on
it. The figure below highlights a few controls associated with the model view. The numbers in the figure refer
to the sections below where the item is discussed.

P

1. This area of the figure shows three model views that have been created. The first one, the one shown as
selected, is the view in the figure above — it is a closeup of the area near the finishing machines.

Clicking on a View easily switches the model’s display to predefined views, such as an overall view of

the model, a close view of a particular object, etc.

The buttons shown in the figure to the right, along with o | Add a view

their definition, are used to create and edit the model views. Isb | Edita view’s name
& | Reset the view to the current model view
X | Delete a view

2. 'This dropdown menu switches from Working Mode to Presentation Mode. The former is what is shown in the
tigure above since it shows all of the ports, connections, the grid, etc. The latter removes the ports,
connections, grid, etc., making the view less cluttered and more amenable to presentation. An example is

shown in the figure below.

3. These items allow the user to toggle various aspects of the view on and off by checking or unchecking the
item, such as perspective projection, connections, grid, etc.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION) 72 AUTODESK

4. 'Three Name Style display options are available: Show Names and Stats, Show Names, and Show Nothing. These
options control what information is displayed for each object in the model — name and a few statistics,
name only, or nothing,.

5. The only other View Style option that is highlighted in the figure above is Connector Sige. This controls
the size of the port connections.

» The current value of 0.25 is a bit large, so set it to 0.75.

The figure below is the Owverall presentation View. It shows the overall model with all the connectors, ports, grid,
etc. removed.

S T T

If you haven’t already done so, save the model. Recall that it is good practice to save often.

gn Use the Save Model As option in the File menu to make a copy of the existing model so that it can be
customized beginning in the next section. Again, you can use any file name, but in the primer, the next model

is referred to as Primer_4.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

12 EMPIRICAL DISTRIBUTION AND DISTRIBUTION FITTING

Chapter 12 uses the Empirical Distribution tool to define the product mix of containers entering the
Finishing Area. It also uses the Empirical Distribution tool to fit system data to a probability
distribution that best describes the arrival process of containers to the Finishing Area.

The base model for the additions described in this chapter is Primer_3 that was saved at the end of
Chapter 11. However, a copy of that file was saved as Primer_4; thus, we begin with that file.

The primer now switches from FlexSzm modeling objects to FlexSim modeling #ools. As the name suggests, tools
are means to support various aspects of simulation modeling and analysis.

Tools are accessed through the Toolbox Library. As

A=A yAcv Qo Bl v f v 45 o] § Toos | 2 Fowltem Bn

ShOWﬂ by the fed bOXeS n the ﬁgure to the rlght’ the i Reset P Run [Stop WP FastForward B4 Sap DI Steo Run Tme: | 0,00 4
Toolbox Library is accessed either through Tookcax x T

(1) the tab next to the Objects Library or & ”"""
: | &

(2) the Tools button on the Main Menu bat. =

3 -'a!'n FowlItem Bn
Moded Fioor

—| &%= Moded Parameter Tables

Also, shown in the figure to the right, tools are added = parameters
= A\ Performance Messure Tables

to a model through the button in the upper left 7\ Perfomanceiaanses
portion of the interface.

The first of many FlexSim tools discussed in the primer is the Empirical Distribution, which has several
roles. The first is specifying an empirical distribution, one that represents sample data from a system and not
a theoretical probability distribution such as the normal, exponential, binomial, etc. The second role is as a
distribution fitter — using sample data from a system or a simulation model to represent that data more
generally as a theoretical probability distribution. Each is explored in the sections below.

12.1 Using an Empirical Distribution for product mix
The Empirical Distribution tool can be used to specify continuous or discrete distributions, and the data

values can be weighted or not.

As assumed so far, the product mix of containers is unlikely to be uniformly distributed, i.e., each type is
equally likely. Therefore, we’ll use the Empirical Distribution tool to specify the planned product mix.

Since this is the first time the Toolbox has been used, the figure to the right shows the default contents of
the Toolbox tab.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION E 72 AUTODESK

» To access the Empirical Distribution, first select the button A oo ot ;
tbat is located below the Library tab, as shown in the figure to the "_q _zd - N Av %~ W ,’ %E‘
rlght. I&iReset P Run [l Stop DI FastForward

Toolbox X m
iy Lbrary ¢ Toolbox
#- v e

| _Za FlowItem Bin
Model Floor
=) = Model Parameter Tables
I3 Parameters
=
= ’\ Performance Measure Tables
: ’\ PerformanceMeasures
=) gl Dashboards
F Content and Process Times
:';] Excel Import/Export

Selecting the button results in the dropdown menu shown in the [re=) SN () vl s

3K Wbrary f Toobox

tigure to the right.

> Select the Statistics option, then select the Empirical Distribution option,
as shown in the figure to the right.

i Goup

¥ MTEFMTTR

Update the default Empirical
Distribution Properties to match the | L [Productix
. Data Sample Generation
ﬁgure to the rlght and based on the Data Type Number v [Weighted Distribution Type Discrete Empirical v
instructions below. Rows 3 < Generate Samples
Data | Weight I
1 1.00 0.50
2 2.00 0.30
» Change the name from | |3 3.00 0.20
EmpricalDistribution] to something

more meaningful, such as ProductMix.
> Select the Weighted checkbox to create a second column in the data table called Weight.

» Increase the Rows to 3.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Change the Distribution Type from Continnous Empirical to Discrete Empirical.

Enter the data in the table as shown in the figure above. The data is interpreted as follows. When needed

at the Source, the product type is randomly selected from this discrete distribution. The type will take on

one of three values — 1, 2, 3 — with probabilities of 0.5, 0..3, 0.2, respectively.

As more product types are added to the model, this table needs to be updated — the number of rows increased,

and the new product types and their probabilities need to be specified. The existing probabilities need to be

updated since the total of the Weight column must always be exactly 1.00.

The Source now needs to be updated so that it uses the Emepirical Distribution and not the Discrete Uniform

Distribution to randomly assign product types. This is done as follows.
» In the Source object (ContainersArrive), open the Triggers pane and

press the view button, as highlighted by the red box in the figure to
the right, for the On Creation — Set Label and Color trigger.

The resulting interface is shown in the figure to the right.

> Select the dropdown menu for the Value property.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

Properties

. ContarersArmive E
+| Statistics

+| Template

+| Visuals

4| Labels

| Source

Fowitem Qess | Container

Arewval Style Inter-Arrivd Time
[Arival 3t sme 0
Inter-Arrval Time
triangular(10, 35

o
On Creation
| Set Ladel and Color vl

T

;55 W e @ x

Hoatsn tdam [Croterse

Arrhesl Style Titer-Amhenl Tne
[Camdutaves
Therdamionl Tre

trive ke {10, 15, 17, qeteiranelcnn v w 4f

+ Qutput
£ Ports
_ Ieggurs
-
o Cresten

4| Zar Lnmed and Cokr

Pocot /1

o ?

¢ 0

‘v

W

A e

»2 AUTODESK

The resulting interface is shown in the figure to the T %

. & Corasinig HO
rlght' o) Statistscs 727
<] Template =7

<] isuals = ?

» Select the Statistical Distributions option S el 2
from the dropdown list, then select Fowen G [Contamer

Armial Style Inter -Amvai Time: by

Empirical(“EmpiricalDistribution]”)
get(getstream (current))

getatrsam{current]) [?
. stream({curmrent]) = ?
» In the Value field, change EmpiricalDistribution] i
D, . . dunifoemy1, 10, gatatreanicurrent)) |
to ProductMix, the name assigned to the e e S —
empirical distribution. Be sure to edit the e 247
name cotrectly and keep the quotation L 2
Jurvforn(y, 3, petstremn{current v
marks. The Value field should read as T Lbe
Ji Sestistical Distributions 3
=~ Parametess)
Empirical(”ProductMix”).get(getstream(current)) i

taplac

0, 22, getstreamicument)
logleguticll 9, 4, gatstraam[curent

lognomakll, 10, 02, getstreamicurrent))

lognoma2(D, 10, 0.2, getstreamicurrentl)
5 3

12.2 Using an Empirical Distribution for distribution fitting

The Empirical Distribution tool is also used to help select the probability distribution to use to represent

system data in a simulation model.

Another DPL facility ran a small batch of test containers. They were produced at the planned production rate
that would support two Finishing Machines. During the test, they collected data on the time between arrivals
to the finishing area.

They produced 125 containers but discarded the data for the first 25 arrivals to any remove startup effects. The
remaining 100 times between arrivals are provided in the Microsoft Excel file named TimeBewteenArrivals, which
is provided in the Resources folder. The file also contains a histogram of the data. A portion of the file is shown
in the figure below.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

A B C D E F G H | J K L M N|
1 14.23
2 21.83 Time Between Arrivals
3| 1767 12
4 341
5| 2620
6| 2221 10
7| 1846
8| 1612
9| 1192 &
10 1697
1] 2203 .
12| 1288
13 1844
1] 1529 4
15| 13.28
16| 1653
17 14.89 2
18| 3461
o i
20| 2865 0) -)
(12.8,14.8] (16.8, 18.8] (20.7, 22.7] (24.7, 26.7] (28.7, 30.6] (32.6, 34.6]
21 30.37 1108, 12.8] (148, 16.8] (18.8,20.7] (22.7,247] (267,28.7] (30,6, 32.6]
22| 2746
23| 2335
. . .ge T x R“
To fit this data to various probability distributions and decide which ﬁ:r, oot
distribution best fits the data, create an instance of the Empirical |77 @
Distribution tool starting in the same manner as in the previous section. | =™
& Dasboard
> Select the button located below the Toolbox tab. Select the |3 bomgensior
B Powltem
Statistics option from the dropdown menu, and then select the Fitted | siowsivs
. 7 Globs! Table
Distribution option, as shown in the figure to the right. # Grow
¥ MBS MTTR
Modeling Logic
2 Object Property Table
*) Process Flow
& State Tables
Al statistics ¥ 3, statistics Cosector
' Tadle Vasciation &y Milestore Coflector
o Time Tdle (¥ Calndated Taoie
Visual » |f Emprical Distribution
& Workspace |/ Frea Distributon
& Experimenter

Tracked Variabie

e

Maodel Parameter Tavle

Performance Measure Table

Ly

The resulting Empirical Distribution interface is

shown in the figure to the right. o o s
e [RETSCwe e (e
o 1 & Samoing Boun: " e
Owte o X

Update this interface based on the instructions |

below.

» Change the name from FittedDistribution] to
something more meaningful, such as
TimeBetweenArrivals.

» Increase the Rows to 100.

» Select and copy (Cntl-C) the 100 values
from the Exvel/ file.

» Select the 100 cells in the Dafa column of the Empirical Distribution table.

» Paste (Cntl-V) the data into the Data column.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» Under the Sample Generation section, press the 2 button to fit the distributions. This change should
result in the interface shown in the figure below.

|_£ l TimeBetweenArrivals ‘ & o
Data Sample Generation
Data Type Number v | [JWeighted Distribution Type Fitted Distribution v
Rows 100 2 Sampling Bounds Mmin Mmax | 35.00
Data |) 8 X
1 14.23 [Mweibull -0.01770 l weibull(1e.80, 10.39, 1.62) Refit
2 21.83 [CJjohnsonbounded - 0.01825
5 e [beta - 0.02151 Prediction Error (w)| 0.01770
2 31,41 [lognormal -0.02352 Location Scale Shape
[loglogistic - 0.02867 ‘ 10.80 l ‘ 10.39 ‘ l 162 ‘
5 26.20 logistic - 0.03248
3 22.21 [loglaplace - 0.03636
7 B4 [[Jiaplace -0.03670 W data
' [Cpearsonts -0.036%6 - eibull
8 16.12 Dpearsonté -0.04061
9 11.92 [[eauchy - 0.04366
10 16.97 [Cnormal - 0.04403
= .03 [[Jexponential - 0.05674
[pareto -0.06379
12 12.88 Djohnsonunbounded -0.10525
13 18.44 [Cuniform -0.13201
14 15.29 Dgamma -0.56012
15 13.28
16 16.53
17 14.89
18 34.61
15 19.80
i
2 .65 10.00 35.00
.37
= 0.3 © Probability Density | |10 Buckets v | [[Jshow All Fits
22 27.46

The best-fitted distribution is considered to be the Weibull distribution. It is at the top of the rank-ordered list
of distributions and has the minimum Prediction Error (0.01770). The probability density function for the
Weibull is plotted as the blue line that overlays the histogram of collected data. The next-best distribution in
terms of Prediction Error is the Johnson Bounded. There is very little difference between the Prediction Error
for this and the Weibull, so either could be used.

The following are a few comments on modifying the display above.
e To display a distribution and its fit to the data, check the box that precedes its name in the list.
e To overlay multiple distribution fits, check the Skow All Fits box below the plot.

e To delete any distribution from considerations, check the box to the left of each distribution name and

Pa

then press the “2 button. For example, if you want to overlay plots of the top three distributions,
delete all distributions except the top three, then check the Skow All Fits box below the plot.

e Ifany changes are made, use the 2. button to refresh list.

The checked distribution is the one that gets implemented as the empirical distribution in the model. The
selected function and its parameters are shown above the figure and next to the Refit button.

Recall that the engineers and domain experts assumed the arrival process for the containers from the upstream
operation would be triangularly distributed with a minimum of 10 minutes, a maximum of 35 minutes, and a
most likely value of 15 minutes. Data from the sample production run is very close to these estimates.
Therefore, the Triangular distribution could be used as well. Depending on the stakeholders in the project, one

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 00 72 AUTODESK

advantage of using the Triangular distribution is that it might be easier to explain to a layperson than the
Weibull. However, the Weibull is a commonly used probability distribution in many engineering disciplines.

» Since the Weibull can be unbounded, and the minimum and maximum interarrival times were considered
to be 10 and 35, respectively, check the Mz and Max boxes to the right of the Sanepling Bounds, as shown
in the figure above.

By checking these boxes and specifying the extreme values, FlexS7z will sample from the specified
Weibull distribution, and if a sampled value is outside of the designated range, FlexSim will resample.
Therefore, by using the Empirical Distribution, we are sure all of the interarrival times will be between 10
and 35.

Now, the Source needs to be updated so that it samples the containers' interartival times from the specified
Weibull distribution and not the triangular as first assumed.

In the Source ContainersArrive,
» Select the dropdown menu button to the right of the Inter-Arrival Time textbox, as highlighted by the red

box in the first pane in the figure below.

> Select Statistical Distribution, then select Empirical from the resulting dropdown menu button, as shown
in the middle pane in the figure below.

» Finally, select the TimeBetweenArrivals Empirical Distribution, as shown in the right panel in the figure.

= — z Jomcu
@ | Consamersarre ®o o
| Statistics 22 Zau
State | generating <
Throughput <
Irput Cutput
0,00 0.00
Content <
Qurr Mn Max Avg
0.00 .00 0.00 0.00
I -] Source o nfit]
Staytine ' e
Mn Max A Flowltem Cass | Container &0
0.00 | 0.00 0.00
Amival Style Inter-Amval Time ~
+] Template 2
e ¥ 2 [CJamval at tme 0
4 Labels 252 Inter-Arrival Tims
38 4 =2 Empirical TimeBatwesndrvale).al mn w I /(
FavimemChss Contaner v R Distribution | TimeBatwesndsrivals® *9
Arrival Style Intee-Ariual Time Stresm getstream{current) ~ /0
[arnyal at tme 0 Ediided
Inter-Arrival Tme B v
4+ Output 2 | Set Label and Color SSITX
il Ports On Exit -
S Tgeers 2 | Add Row and Data to Global Table S EX
-
Tn Creation
SetLabel and Color T@®EX
Onbdt 000000
Add Rowy and Data to Global Table =z @ 2 X

If you haven’t already done so, save the model. Recall that it is good practice to save often.

—gm Use the Save Model As option in the File menu to make a copy of the existing model so that it can be
customized beginning in the next section. Again, you can use any file name, but in the primer, the next model
is referred to as Primer_4A.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

13 MODEL PARAMETER & GLOBAL TABLES

Chapter 13 introduces two types of data tables that help organize information used in Flex:Si models:
Model Parameter Tables and Global Tables.

We now consider a few more modeling tools that are available in FlexSim. Both are tables, which provide
convenient means for storing information. During a simulation, an aspect of the model can reference a table
cell to obtain a parameter value.

It is good modeling practice to separate data (property values) from objects, especially if the values are
expected to be changed, such as when conducting what-if analyses and experimentation.

Parameter Tables contain values that are likely to be changed duting experimentation with the Experimenter
ot in an optimization (FlexSim links with OptQuest to search for an optimal solution.) Global Tables ate motre
general, resemble spreadsheets, and can be used to store input information or output from a simulation. FlexSzz

provides a convenient link to MS Exve/ so that data can be easily exchanged (imported or exported) between a
model and MS Exve/ via Global Tables.

The base model for the additions described in this chapter is Primer_4 that was saved at the end of
Chapter 11. However, a copy of that file was saved as Primer_4A; thus, we begin with that file.

13.1 Model Parameter Tables

As shown in the figure below, a Model Parameter Table named Paramseters is created by default in the Model
Parameter Tables section of the Toolbox. For brevity, these tables are referred to as Parameters Tables; a
model may include multiple Parameter Tables.

Toakay 5 Mool SERTREET v X Propetes

e ke Disgiy Lnes Descrptor

v 7 o . . ; -\ Paremeter Table

Select the Parameters table in the Toolbox and edit it as described below. It will contain the average process
times at the Finishing Machines for each container type.

» In the text box in the Properties window, rename the table from Parameters to FinishTimes.
» Increase the number of parameters to 3.

» Rename the parameters from Parameterl, Parameter2, and Parameter3 to FinishTime_1, FinishTime_2, and
FinishTime_3, respectively.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» Click on the Value cell for FishishTime_1. The :am:T 1 Vale llesplay Tnits Desaiption
inishTime_ v
default settings are shown in the figure to the right. |Finshmime 2 :
FinishTime_3 Type Continuous v
Lower Bound 1 v
Upper Bound 10 v
Reference lhcm»;— ‘/
On Set ‘ % @ &
» 'The options for the data type of the value are shown in the [Tvame Display Units Desaription
1 1
figure to the right. Note the other types that may be 14
declared, but leave the default value of Continuous since the || ™ EmRoE S
. . . . Lower Bound
process times are continuous values, i.e., not integer (1, 2, 3, Integer
Upper Bound glscrete
1 inary
")’ blnary (O’l)’ ete. Reference Option
Sequence
On Set Expression
Pass-through
Custom

» As shown in the figure to the right, for | #s Med EETRSTRe
FinishTime_1, enter the Lower Bound as 10 and the | Poremet=s [FERIX ‘

Name Value Display Units Description
Upper Bound as 20. = T~
FinishTi 2
» Set the value of Value to be 15. rreme.? = pome—— -
Lower Bound (v
The finishing machine’s process time for container pper Bound l‘“ ‘;
. . . Reference None
type 1 will be 15 minutes, but it could be set as low o T
n Set ‘ s

as 10 and as high as 20. If a value outside this range

is entered, an error message will indicate the specified value is out of bounds.
» For FinishTime_2, enter the Lower Bound as 15 and the Upper Bound as 25.
» Set the value of Value to be 20.

» For FinishTime_3, enter the Lower Bound as 20 and the Upper Bound as 40.
» Set the value of Value to be 30.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Link the parameters to the process times in the Processors. On each Processor:
> As shown in the figure to the right, in the Processor :
) =g Fristach_t ol 2]
pane, select the edit button next to the Values By Case I | qanetics 7
option of the Process Time property. A red square in [| < Template & 2

. . . +] Visuals v 7
the figure highlights the edit button. e 7453

| Processor e ?

» For each case, select the correct Parameters value, [vaxcontent |1 | MAnmate Items

e.g., FinishTime_1 for Case 1. The completed t:?f.:::mcm;s =
interface should look like the figure below. 1

£ use Cperator(s) | 1

Process Time

Values Sy Case n vl & Ir'r /0
Process Time i 1 -
Values By Case min v & j/ Case Funchon | item.Type v)
Setup Cases & %
Case Function item.Type - /‘
Cas= | Default Time -
Setup Cases om| | X = ="
Case | 1 Time 15 Nhel of
Case -Default Time 1000 - /' — i
Cas= | 2 T Labels > | o
7= s 7
Case Time Model.parameters.FinishTime_1 v / 3 Seatictical Distributions 3
s = Paramet > . FinishTime_1
Case | 2 Time | Model.parameters,FinishTime_2 - 2 = = Perometers inishTime_
) Pores FinishTime.2
Case |3 Time Model.parameters.FinishTime_3 - 2 -] Triggers FirishTie 3
f v T ——
On Pre Craw
| Change Object’s Stat Disolay 4P BX

Again, repeat this FinishMachine_2.

Model.parameters.FinishTime_1 is a FlexSiz command that references the current value of the FinishTime_1
Model Parameter.

13.2 Global Table to store arrival times

Global tables are used to store many types of information. In this case, a table will be used to store the time
and type of each container as it arrives to the Finishing Area. This data may be used to verify the arrival
process.

The table begins blank, i.e., it contains no information, but when an arrival occurs, a new row is added, and
its time and type are written in the cells under the appropriate columns.

» Click the button on the Toolbox and select Global Table from the dropdown list.

Change the table’s Properties to those shown in the figure below.
» Change the name from GlobalTablel to ArrivalTimes.

» Ensure the value of Rows is 0 and Columns is 2.

» Click the edit button for the On Reset propetty and select Delete All Rows. The data in the table will be
removed whenever the model is reset.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» Change shaded “headers” for the columns from the default Co/ 7 and Co/ 2 to more descriptive names, e.g.,
ArrivalTime and Type, respectively.
Note that the headings are just text for information purposes and are not table values. However, they
are very helpful in understanding what data tables contain.
Also, the row heights and column widths can be changed by dragging the lines dividing the cells.

Jis Mode (T TURETmED v X Prepertes x
|amamne [Tioe |

I Table ?
AarrealTimes
Rows Cooms
[z 3 [z :
[Juse Burdls Hsa0
On Reset
Delete AlRows T &3
GaTo Row | | cotumn [
Deaription

The figure above shows that tables open in a new tabbed window, like the model. The view may be closed by
pressing the X in the upper-right corner of the interface. The window can be reopened by double-clicking the
table in the Toolbox.

» As shown in Panel 1 in the figure below, use the button in the Triggers pane of the Source object
ContainersArrive to create an On Exit trigger.

1:@
?
: o’
@ | Contanersarmve =7 ¢
+) Statistics 2? . o S
+) Template h 2 Se—Heor s S e X:
+1 Visuals o ad s
z o o s :
4 Labels 22 - “ ot (] “m
3 o =
On Exit | & ? 4 :—-p:u 53
On Dray v Ta K13 w2 Jockr: g = Yo ‘
n Draw | e) Lutbsels FRE) | Labaly =
On Pre Draw -1 Souren 2 | Searcw)
On Reset | Towlizn 0o [Contane i~ Vemttcnoni® . .- =
) frad e [Tterarmie Tive - e AR INE
On Message et et Ll amter atdnes 0
i v 4 Gt I
f On Simulation Start | AR 2 4 acdium e vt W ok s b s 2
£ | X CABUIN, D22 & %90z e and wite date
Pick Offset | o2 PRy IERS \ 0 the 2o e b e
: 3 >
! sk Tz arel antoe el
On Stop i 2 ' Taze lnedlensy v
}
On Resume ! 2 | ptaie P s *
On State Change 284Rstave 1 oty haties > AnalTme) Medrttos L
——: Coksvos = —r |
— - = p are I -
On Creabon Meodel 5. Sl - ! et L
el - ; " - |
SetLabel and Cakor 2@ BX : | {E)
Stk — o =

» Using the button next to the text box of the On Exit trigger, select Data, then select Add Row and Data
to Global Table. The interface should look like Panel 2 in the figure above.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» Also, as shown in Panel 2, for the Table property, use the dropdown button next to “mytable” to select
Global Tables then Arrivallimes, the table just created above

Note that if you create a table before using it in the model, the table will appear in a dropdown menu

list, and thus, you do not have to type in the table name. The name must be typed exactly as it is in the

Global Table — names are case-sensitive in FlexSim. Therefore, it is better to select the name from the

dropdown menu.

The first column will contain the arrival time; it is determined by the Flex:Szzz command Model.time.

> As shown in Panel 3 in the figure above, add the data to be written in Column 2. Use the button to
the right of Add/Remove Columns, which creates a new column with a default value of 70.

» Use the dropdown button to select #em, then, as shown in Panel 3 in the figure above, change the entry to
item. Type. This means the value of the current item’s label named Type will be displayed in the column cell.

» Reset and Run the model. Verify that each containet's artival time and type are written to the Global

Table Arrivallimes. 5 Model (TIVRRvATmES

The figure to the right shows a partial list of each container’s ,
. .] ArrivalTime | Type |
arrival time and its type. 1183

23.43
45.16
61.76
82.15
111.50
If you haven’t already done so, save the model. Recall that it is good 127.37

= | 145.41

practice to save often.
171.08

195.76

212,53
I .l Use the Save Model As option in the File menu to make a copy of |~ 235,42

the existing model so that it can be customized beginning in the 248.95
next section. Again, you can use any file name, but in the primer, 262.40
the next model is referred to as Primer_5. 284.95
297.63
311.17
335.75
361.81
377.52
393.01

Mo N W W e = R e e e W e N W N e W e

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

14 DOWNTIME

Chapter 14 adds several types of downtime to the model. Break and lunch times are added for the
Finishing Operator, i.e., when the operator is unavailable to do system work. Two types of downtimes
are considered for the Finishing Machines. The first is a quality check that occurs on a fixed clock-
based schedule; the second is randomly occurring breakdowns that are based on the object’s state.
Machine breakdowns require a Finishing Operator for repairs; the quality checks do not require an
operator. Pie charts are introduced to summarize the utilization and percentage of time the Finishing

Machines are in various states. The charts are added to a new dashboard.

In FlexSim, thete are two means for making resoutrces unavailable, i.e., incurring downtime — the Time Table
tool and the MTBF/MTTR tool. Both are accessed through the Toolbox Library. A powerful feature of
FlexSim 1s the management of downtimes, especially multiple types of downtimes. As such:

e Any object can be subjected to downtime.
e Any object can be subjected to multiple types of downtimes, oftentimes referred to as competing downtimes.

e Multiple objects can follow the same downtime process.

The base model for the additions described in this chapter is Primer_4A that was saved at the end of
Chapter 13. However, a copy of that file was saved as Primer_5; thus, we begin with that file.

14.1 Time Tables

Planned downtimes - ones that occur on a known and recurring basis, such as breaks and shift schedules - are
modeled using Time Tables.

In this example, the Finishing Operator takes a 15-minute break two hours into an 8-hour shift, a 30-minute
lunch break four hours into the shift, and another 15-minute break six hours into the shift. This is implemented
via the Time Table tool and its three tabs — Members, Functions, and Table. The property settings for this

tool are explained below.

» In the Toolbox, press the button and select Time Table from the drop-down menu.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

As shown in the figure to the right, on the Téme Tiéme interface: #4 Time Table Properties

5 | OperatorBreaks

» Change the name from TimeTablel to OperatorBreaks.

Members Functions Table

The Members tab is used to assign this downtime pattern to one or more V| ‘1
ObjCCtS. + [VvisualTool

+ ¥ Source

+ & Queue

+ =¥ Processor

» Using the button, select FinishOperator_1 from the Operator + 9 sink

. +: Dispatcht
object category and press the Select button. If you choose a category, _;'T'O;:l;,er
such as Operators, the timetable will apply to all objects in that W e

category.

Clear

The Functions tab controls what happens when a resource goes down, i.e., becomes unavailable and then
resumes. By default, Flex:Sim stops the object at the appropriate time in the simulation, and the object remains
down for the prescribed time. In this example, the following behavior is added to the default.

On the Functions tab, the default Down Function value, S7gp Object, stops the resource wherever it is and
whatever it is doing, and it remains at that location for the prescribed duration. However, in this example, the
Operator takes a break at a specified location, at the Dispatcher (FinishOperators) object. The prescribed delay
starts when the Operator reaches the specified location.

To implement this, complete the following steps.

» As shown in the figure to the right, change the [owawme /| e
Down Function property from Stgp Object to Travel
To Object, Delay Until Down Time Complete by selecting
the option from the drop-down menu.

Mambars FUNCIONS Table

Down Furchon Stao Obgect v

ResmeFunchion Resuna Object

On Down Sop Input and Output
Travel To Locstion, Delay Until Down Time Complets

On Resume Traved To Object, Delay Until Dovn Time Complet=

LHE 3 Aoty oK Cance

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» In the resulting dialog, set the Object property to

FinishOperators using the button and select the object in
the Dispatcher category.

Retain the default values for the Priorsty and Preempt
properties.

g

To provide a visual cue that the operator is not available, change the object’s color during the break period.

» As shown in the figure to the right, change the On Down
option to Set Color (Group) and the Color property value to
Red (the default). This changes the operator’s color to red
when on break.

Trawed To Object, Debay Linit Do Trne Conaiate

Fasrse Olpect

» Similarly, reset the operator’s color after the downtime is concluded. Change the On Resume property to
Set Color (Group) and then the Color property to Yellow from the drop-down list of colors. This will

restore the operator’s color to its default color, yellow, when the operator is available for work.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

The Table tab is used to enter the downtime information. The |~
figure to the right is the default interface, referred to as the
Graphical interface.

However, we will use the simpler Tabl interface.
» On the upper right portion of the interface, change the
selection from Graphical to Table.

O& Aty o Cancal

The Table interface is shown in the figure to the right.
» Change the Mode from Daily Repeat to Custom Repeat.

» Change the repeat value, which is just to the right of the

Mode value, to 480. This sets the break pattern defined
below to repeat every shift or every eight hours (480
minutes).
This is handy when simulating multiple shifts, as the
downtimes for each shift do not have to be explicitly
included in the timetable; the provided pattern just repeats
for as long as the simulation runs.

Asoy; [Cancal

» The first row will be for the first break, two hours into the shift. Therefore, enter 720 in the Tzme column.

» 'The next column defines the State the resoutce is in when on break. Use the dropdown menu as shown
in the figure above to select state 35 — on break. There are 50 possible states defined in FlexSim. The State
property is used to calculate the resource’s utilization.

> Set the Duration of the break to 75.

» Keep the default values for the Profile and DownBehavior columns.

» Increase the number of Rows from the default 7 to 3 so the other breaks can be entered.

As shown in the figure to the right, enter the information

-~

for the other two break periods.

o ‘ OperatorBreaks

» The second downtime is a 30-minute lunch break

Members Functions Table

Custom Repeat v
3 s

that occurs four houts into the shift; therefore, set

Mode

Rows

Time to 240 minutes and Duration to 30 for the

second row. Set the State to 34 — lunch.
» The third downtime is another 15-minute break that
occurs six hours into the shift; therefore, set Tzme to

360 minutes and Duration to 15 for the third row. Set the State to 35 — on break.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

Time

[sme

‘Durahon

|Proﬁ|e

DownBehavior

120
240
360

35
34
35

15
30
15

0
0
0

0x0
0x0
0x0

»2 AUTODESK

Since the Operator’s color is set to red when on a break, its color is not set back to its normal color if the

simulation ends while the Operator is on break. To avoid this, add an OnRest trigger to the Operator that sets

its color to yellow whenever the model resets.

Recall the Operator, FinishOperator_1, already has an On Reset trigger that places the object at a set location

when a simulation begins. Therefore, we need to add another On Reset trigger.

> As shown in the first panel in the figure below and highlighted by a red box, select the Edit button to the
right of the On Reset trigger.

» This opens the intetface for defining the Sez Center Location On Reset trigger, as shown in the second panel

in the figure below. Click the button to open a list of possible triggers; select Sez Object Color.

» 'This opens the interface to define the Sez Object Color trigger, as shown in the third panel in the figure below.

» Change the Object value from item to current. Current refers to the current object we are working on, which

in this case is the Operator.

» Change the Color from Color.random() to Color.yellow using the picklist, as shown in the last panel of the

tigure below.

Yoo (10
~| Statrhes Pt 2 7
ate| e |-
A Nk Ooerator 1 g € g .
& [nerocentr. ____lIaHe N a.ds *
| Statmtes 21 Ingut cups

J
o
*
2
Totd Tomnd | 0.0 | # e F=h
+] Template 2 - Persoa Visuals 2
o) Visuals & ? -] Opwrator =7
1) Labels P = TaskUxmcuter v
] Person Visuals ? - Travel 7
1| Operator & ? <1 Depalcdwr =27
2] Vasktxeoster m = Ports 2
¥ ? Trgaces 2

7

’4 mvsoperstor_L 140
=l Statistics Popout 2 7
State | de g
g
g
L g
Tozal fravel [0.00 T s
o) Templhete =
+ Visuals o6 ?
+] Labels Pl 5 ¢
+| Person Visuak ?
.+] Operator = ?
4] Vasktxecuter =
|| Travel 0
=] Dispatcher .2
+l Parls 7
| Trigoers 2
b
OaReset
Set Center Locaton
4 Sal Ot e
Cbjoct current .
Gk Colorrardard b

= Paametors

L Caloe

CalortomPaietie]], "ColoePaictte "}

CalarbyNambelT)

Colorrardomy
Color.agua
Colorblack
Caloctie
Colorbrown
Color.gray
Color.green
ColachightZlue
Calolime
Colorcesnge
Colorpirk:
Colar.purple

Colorsitver
Color.teal

Color.wnite
Calorysitow
Calar(1, 0, 0}

The interface should now look like the one in the figure to the right.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

-] Triggers ?
g v
On Reset
l: ‘ Set Center Location ‘ X
4 | set Object color X
Object |current \ 4
Color [Color.yellow -/

»2 AUTODESK

Similarly, the Triggers pane on the Properties window should look like [Zriggers 2

the figure to the right. Note that it indicates there are two On Reset |% ~
On Reset
lSet Center Location, Set Object Color lfr @ E X

triggers, one to set the object’s location and one to set the object’s color.

14.2 Chart of Operator utilization and states

To see the effects of downtime, create a new dashboard that shows the states of the Operator.

» Create a new dashboatd by clicking the Dashboards button on the Main Menu or the button in the
Toolbox.

» Change the name from Dashboard to Utilization.

» Drag a Pie Chart from State option in the State pane in the Dashboard libraty to the Utilization workspace.

As shown in the figure to the right Properties

» Change the name of the chart from State to FinishOperator. @ [FinishOperator |1 T2 |
-] Options ?
Objects

» Use the button in the Objects section to select the Operator. L S L

[FinishOperator_1

> In the Settings pane, change the size of the pie chart
e Set Outer Radius to 100.0
e Set Thickness to 50.0.

State Profile Default
If the model is reset and run, the chart should resemble the one below.

StateTable1 V|G e
[show Exduded States

m v X Adjust colors based on State Table
-| Settings 2

Show Legend
Show Percentages
[JShow zZero Columns

FinishOperator

Segment Ordering Use order in color palette v
| Travel empty [Jj Travel loaded] Offset travel empty -
Il Loading Unloading Utilize Idie Lunch Pie Sizing Fixed values v
On break Outer Radius 100.00
FinishOperator_1 Thickness [50.00
= Text ?
Predision 2.00 |
7.379

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Notice all of the states the operator is in during the simulation — Trave/ empty, Travel loaded, etc. The Operator
spends most of the time in the Id/ state since it is utilized only 7.37% of the time. After Idl, the three next

most occupied states are Oz break, Lunch, and Utilize (performing the setup operation on the Processors).

The states that contribute to the utilization calculation are shown in a State Table.
The default table in FlexSin is shown in the figure to the right. Custom tables can
be created if needed. Percent utilization is calculated as follows.

Utilization = 100*(total time in utilized states) / (total time)

The Analysis column in the table shows how each state contributes to an object’s
utilization. All states with the green UZilize indicator contribute to the numerator in
the formula above. All states with the green Ufi/ize indicator plus those with a blank
in the Analysis column, i.e., no indicator, contribute to the denominator in the
formula above. The utilization calculation does not count any states with a red
Exclnded indicator.

The Analysis value for each state can be toggled between Utilige, blank, and
Excluded.

State Tables can be accessed and created via the Toolbox.

» Reset and Run the model. Verify that the Operator travels to the
Dispatcher at the prescribed times (120, 240, 360, 600, etc.), that its shirt
turns red while on break, and that it reverts to yellow when not on break.

In the figure below, the operator is on a 30-minute lunch break at the
Dispatcher's location. Note that an easy way to stop a model at predetermined
times is to set multiple stop times, as shown in the figure below.

Stop times are added by clicking the button, removed by clicking the -#*
button, and are made temporarily inactive by unchecking the box in front of the
time text box.

@

Auta-fil from state profie

D=play Kame

& Empty
7 Colectrg

& Relexsrg

3 Wiating for operater
10 Walting for trareporter
11 Ereakd

ey

14 Travel
15 Travel

16 Offset

17 Offget ravel laded
28 Losdrg
28 Unioading

20 Down

38 Freprocessrg

33 Pestprecassing

brelyss |

~

Fact Formard JD)

=

2o Dl step

= AntalTenes

Snep tn Grid

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

— N

If you haven’t already done so, save the model. Recall that it is good practice to save often.

¥ Use the Save Model As option in the File menu to make a copy of the existing model so that it can be
=] customized beginning in the next section. Again, you can use any file name, but the next model is referred
to as Primer_0 in the primer.

The base model for the additions described in this part of the chapter is Primer_5 that was saved
above. However, a copy of that file was saved as Primer_6; thus, we begin with that file.

14.3 Reliability

Reliability refers to an object being able to perform its required functions for a specified time. It is an important
contributor to overall system performance. Two key factors are used to specify reliability: Mean Tine Between
Failures (MTBF) and Mean Time To Repair (MTTR). The former is the uptime or time an object operates,
expressed as an average or mean value; the latter is the time it takes to get a down object back to its operational

state, again expressed as an average or mean value.

A discussion of reliability is beyond the scope of this primer. However, the topic is introduced in the Applied
Stmulation Modeling and Analysis Using FlexSim textbook in Sections 7.1-7.5.

In this example, each Finishing Machine is subject to two types of downtimes. Thus, the model has competing

downtimes that must be managed, which FlexS7z does very well. For example, in most cases, if a resource is

already down or not available, it cannot incur another type of downtime.

14.4 Constant MTTF/MTTR; MTBF based on clock time; no resource for repair

The first type of downtime on the Finishing Machines is a quality check that occurs every 10 minutes for 15
seconds; i.e., MTBF is a constant 10 minutes, and MTTR is a constant 15 seconds. The downtime occurs
regardless of the machine’s current state, and how much the machine has been used; i.e., MTBF depends on
clock time only. No other resource is needed; i.e., the machine is just down for the duration of the self-check.

> In the Toolbox, press the button and select the MTBF MTTR tool from the drop-down menu.
» Change the tool’s name from MTBFMTTRT to QualityCheck.

The MTBF MTTR tool contains three tabs — Members, Functions, and Breakdowns. The settings for the
quality check downtime are explained below.

The Members tab assigns this downtime pattern to one or more objects; i.e., the downtime behavior defined
on the Functions and Breakdowns tabs are applied to all objects in the Members tab.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

o : . MTBF/MTTR P i = m] X
» Use the L= button to get the list of model objects, |7 Ppes=
as shown in the figure to the right. il v EAenatid
Members Functions Breakdowns
L . .)
» Select both finishing machines, FinishMach_1 and L | E_‘
.. | |
FinishMach_2, from the Processor category. . ¥ -
| VisualTool
Alternatively, if the category Processor is selected, all + @ source
+ @ Queue
Processors are chosen. [Processar]
P FinishMach_1
P FinishMach_2
+ ¥ sink
+ Dispatcher
+ “ Operator
Clear
Q& Apply OK Cancel
The Functions tab defines how often downtimes occur
. . . #% MTBF/MTTR Properties = m] X
and their durations. In this case, all values are
L . % | QualityCheck v| EEnabled
deterministic or constant; thus, the default probability _
. . . . i Members Functions Breakdowns
distributions will be replaced by constants, as shown in
First Failure Time 5 mn v & & 2
the figure to the right.
Down Time 25 min v & & #
» Change the First Failure Time property from the ,
. Up Time 10 min v & /
exponential probability distribution to a constant 5
minutes. Since a quality check occurs every 10 DownBehavior [Custom
minutes, this assumes the simulation starts halfway DownFuncton [Stop Object - &
between dOWfltlmeS. Resume Function Resume Object v &
» Change the Down Time property from the uniform
probability distribution to a constant 15 seconds, | & +es
0.25 minutes. On Repair | @ 8
» Change the Up Time property from the exponential
probability distribution to a constant 70 minutes. |24 ooy o | o

This is the time between failures or between down states,

The default values are used for the Down Behavior, Down Function, and Resume Function. When an object

experiences downtime, it is stopped for the duration of the downtime and then restarted. No resource is needed

during the downtime; the machine processes the downtime itself.

»2 AUTODESK

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

The On Break Down and On Repatr triggers [~ vmimmm sopmie ~ o0 x

are used to change the object's color when it is | & [wsuce=s Pt
down. In this case, the object is orange when it | e " mee
: . . 5t Falure Time . ”
is down for a quality check. It is set back to green
own T R P .
when it is not being checked. ,
A e -5
As shown in the figure to the right: S -
Dawn Funcion top Obgect v 90

» Use the button on the On Break Down
trigger to show a list of actions. Then, select
the Ser Color (individual) option from the

unction Resume Object _—

4 SatObjectooior

drop-down menu. =
ola - Color romPalette], "ColorPalette]
— ColorbyNumber(l
» Use the Color dropdown list to change the Andom(
Color value from Color.randon:()to Colorisck
Colorblue
Color.orange. Colorbrown
Similarly, the On Repair trigger sets the object’s S
color back to green, indicating it is not down. se—
Color.purple
» Using the button on the On Repair
trigger, select the Sez Color (individnal) option
Color.whste
from the drop-down menu. Coloeyellow
Color(l, 3. 0)

» Use the Color dropdown list to change the Color value from Color.randon:()to Color.green.
Now consider the third tab, Breakdowns.

For clarity, it is best to differentiate the downtime state for failures, which is a “breakdown,” as described in
the next section, and the planned downtime for the quality checks.

For the check quality case, the time between failures (downtimes) is based on the simulation clock and not on
any of the object’s states; i.e., the machine will be unavailable for 15 seconds every 10 minutes, regardless of

whether it is processing or not, so that it can upload data.

The default for breakdowns is to base the downtime on the simulation clock only and not on any object state.
The default is used for the quality check. The default is when the Apply MTBE 10 a set of states box is unchecked.

This will change when the downtime is due to a failure, which is described in the next section.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» On the Breakdowns tab, as shown in the
figure to the right, change the Down State

#< MTBF/MTITR Properties - O X

% [Qualitycheck v| enabled

from the default, breakdown, to down, using

; . . Members Functions Breakdowns
the list of states on the menu. This state is

Down State down e

more descriptive of the behavior since the

idle A
. . Break down I .

quality check is not a breakdown. busy

[] Apply MTBIblocked

generating

States t{empty States Applied to MTBF
collecting

releasing

waiting for operator
waiting for transporter
breakdown

scheduled down
conveying

travel empty

ofltravel loaded

offset travel empty
offset travel loaded
loading

setup

utilize

el |full

not empty

filing

starved
mixin:

o0& ﬂomr?g Apply Cancel
Mecoiod

idl

Since the finishing machines’ color is set to orange when undergoing a quality check, its color is not set back
to its normal color if the simulation ends while the Processor is performing a quality check. To avoid this, as
described below, add an OnReset trigger to both Processors that set their color to green whenever the model

resets.
» Use the button on the Processor’s Triggers pane to add an On | [Frswess |1 12 @
. +] Statistics Help 2 2
Reset trigger. 4] Template X
+) Visuals v ?
+] Labels 250 ?
» Use the L= I button to the right of the trigger’s text box to select the | =
action, Set Object Color. alimout & ?
+| Groups 2
+| Ports 2
. . =] Triggers ?
> As shown in the figure to the right, use the dropdown menu for | 3
Object values to change from the default, which is e, to current. The IO" ==
color change pertains to the current object, the Processor, and not [* === P a
. . Object |current o
an item being processed.
Color | Color.green -2
» Similatly, use the dropdown menu for Color values to change from | *

the default value Color.random() to Color.green.

» Remember to define the trigger on both Processors.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

14.5 Composite state chart

To see the effects of downtime, add a chart to the Dashboard Uti/ization.
> Open Dashboard Utilization cither through the Toolbox or the Dashboard button on the Main Menu.

» Select the Composite State diagram from the State section of the Dashboard library and place the diagram
under the one created for the Finishing Operator. The Composite State diagram will show the combined
utilization of both finishing machines.

.o . inishMachi
» Change the name to Finish Machines. @ [Fnchriochines i~ @
-] Options ?
Objects
. .) A Xt 3 # @
» Use the button in the Objects section to add the two FrishiMach 1
inishMach__
Processors, as shown in the figure to the right.
» In the Settings pane, change the size of the pie chatt
e Set Outer Radius to 100.0
e Set Thickness to 50.0.
State Profile Default
StateTable1 VIE

[show Exduded States

If the model is reset and run, the chart should resemble the one below. —|E4Adist colors based on state Table
FinishMachines -] Settings 2

W Processing [Setup Idle Down [show Legend

Show Percentages

Show Zero Columns

Segment Ordering Use order in color palette v

Pie Sizing Fixed values >

Outer Radius 100.00
Thickness 50.00

+) Text
+| Colors
+] Sorting
+| Advanced

W

Notice all of the states the two finishing machines go through during the simulation — Processing, Setup, lLdle, and
Down. The Processors spend about half their time in the Processing state and half in the Id/e state.

Also, notice the colors for Idle and Down states are very similar and hard to distinguish. We’ll modity the Down
color to orange.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

As shown in the figure to the right, 2 FankSax

» Seclect the chart so that its Properties — "m“r'r‘q““h'”esna S
appear in the right frame. ol B
Cirgoaton
» In the Colors pane, scroll down to the
“Waiting for operator” and “Down” states, as || o -‘f:" e J
highlighted in the red boxes in the figure. ' 2
We'll change both states here because when [- . i
Down is changed to orange, it is very close to : 77 X
the color of the Waiting for operator state. L =) : S
S ” x v
» Select the dropdown menu to the right of Epes :
each state. This will result in displaying the s
color palette indicated by the arrow in the | musViwa
figure. ‘;llllllll'l
e Select orange for the Down state. | — -
e Select purple for the Waiting for operator 4r[_‘_—_‘: .
state. ‘ S

If the color seems transparent, change the A color factor (below the R, G, B factors) to 255. This will make the

color opaque or have no degree of transparency.

The chart should now look like the one in the figure above. While the colors in the chart still need improvement,
they are sufficient. Since there are many more topics to explore, the interested reader can explore customizing
color palettes further in the FlexSim User Manual.

— N
é If you haven’t already done so, save the model. Recall that it is good practice to save often.

= Use the Save Model As option in the File menu to make a copy of the existing model so that it can be
customized beginning in the next section. Again, you can use any file name, but the next model is referred

to as Primer_7 in the primer.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION ‘ 72 AUTODESK

14.6 Random MTTF/MTTR; MTBF based on system states; resource for repair

The second type of downtime on the finishing machines is a random machine failure. The times between
failures and the times to repair are both considered random variables or probabilistic and are based on
probability distributions. For this type of downtime, a resource — the finishing operator — is needed to perform

the repair.

The base model for the additions described in the remainder of the chapter is Primer_6 that was saved
above. However, a copy of that file was saved as Primer_7; thus, we begin with that file.

> In the Toolbox, press the button and again select the MTBF MTTR tool from the drop-down menu.

Modify the Members tab as follows and as shown in the figure |~
to the right. | :‘t"'f‘ — | BBt
&2 %88 e

» Change the name of the downtime from MTBFMTTRT to | =&:

FM_Failure.
» On the Members tab, just as was done with the

QualityCheck downtime described above, use the

button and select both finishing machines, FinishMach_1 and

FinishMach_2, from the Processors category.

o0& aacly o« Cercei

The Functions tab defines how often downtimes occur and their duration. It also defines what actions occur

in the simulation whenever a downtime occuts.

. 3 . #~ MTBF/MTIR Properties - O X
The Functions tab for this example is shown

FM_Failures v ‘ Enabled

4

in the figure to the right and explained below.

Members Functions Breakdowns

In this case, all of the times are obtained by FirstFailure Time |exponential(0, 60, getstream(current)) mn v & &
sampling from probability distributions. For Down Time uniform(s, 15, getstream(current)) nn v &G 2
this example, the default distributions are used.

Up Time exponential(0, 120, getstream(current)) min v &f 5/'
The exponential distribution is the default for DownBehavior [D s
the times between failures (Ferst Failure Time

Down Function Stop Object and Call Operators v i3

and Up Time). The only parameter required e B e
for this distribution is its mean value. Resume Function Dispatcher | downobject.centerObjects[1] > = 5
Stop ID 1 - /0
.. . . . On Break Down priotity 0.00 @
The default distribution for the repair times is o o
uniform. Two parameters are required for the On Repair Number of Operators |1 2|8
. .. . : Use "waiting for tors” state whil
uniform distribution: the lowest and highest watting for aperatre o [No v
VB.IUCS, i.e., the shortest and longest pOSSiblC Qe Note: This function handles the resuming of the object. Choose |ncel
L . the option "Do Nothing” as the resume function to ensure that
repair times. All repair times are assumed to be the object s not resumed tice.

equally likely between these two limits.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» Change the First Failure Time’s second parameter in the exponential distribution from the default value
of 7000 to 60 minutes. This is one-half of the distribution’s mean value, and it assumes the simulation
started halfway between downtimes.

» Change the Down Time’s parameters from the default values of 50 and 100 to 5 and 75. This assumes
downtime is uniformly distributed between 5 and 15 minutes.

» 'The Up Time property is the time between failures or time between down states. It is assumed to be
exponentially distributed with a mean of two hours (120 minutes). Therefore, change its second parameter,
the mean, from the default value of 7000 to 720.

» Change the Down Function from the default Stop Object to Stop object and call operators via the property’s
drop-down menu. The resulting interface is shown in the figure above. All default values are used. This
selection stops the object during downtime and calls a finishing operator to perform the repair. The default
calls the object connected to its center port; in this case, it is the Dispatcher.

» According to the note at the bottom of the intetface for the Down Function propetty, the Resume Function
value is to be set to Do Nothing via the drop-down menu. This is because the logic for resuming is managed
by the Down Function.

As with the QualityCheck downtime, the On Break Down and On Repair triggers are used to change the color

of the object when it is down.

» For the On Break Down trigger, as with the QualityCheck downtime, select Set Color (individual) option.
However, for failures the object is colored red when it is down; therefore, choose the Color.red option.

» For the On Repair trigger, as with the QualityCheck downtime, select Set Color (individual) option and
then set the color back to green using the Color.green option.

As stated previously, using the correct probability distributions in a model is important since the choice can
significantly impact system performance and simulation results. FlexSiz includes many types of probability
distributions. A full discussion of how to select distributions is beyond the scope of this introductory primer.

In this example, the time between failures (downtimes) is based on the state of the object and not the simulation
clock. The finishing machines only accrue downtime when they are running or processing. For example, if the
time to the next failure on a machine is two hours and the machine operates only 50% of the time, then the
next downtime will occur in four hours of simulation time. Also, a failure will occur only when the object is in
one of the selected states. For example, a failure will occur only when a machine is processing and not when it
is idle.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 121 72 AUTODESK

The above situation is defined on the

~
Breakdowns tab and is shown in the figure to
) & | FM_Failures \/l [F]Enabled
the right.
Members Functions Breakdowns
» Check the box Apply MTBF to a set of
Down State breakdown v
states.
Break down members individually
Apply MTBF to a set of states
» Move states from the States to Choose States to Choose From —
From list to States Applied to MTBF e — : 2
: b
using the >> move button. Select the bocked
. . generating
processing state, then click the >> button so ensty
. col ecﬁng
the processing state moves to the States releasing 22
'Ava!vqng for operator v
Applied to MTBF pane. In this case, only o treOst
. : scheduled down
the processing state is selected. conveying
travel empty
travel loaded
offset travel empty
offset travel loaded
loading -
Q& Apply Cancel

» Reset and Run the model and obsetrve the activities at the Finishing Machines.

In the figure below, the screenshot on the left shows one Finishing Machine in the breakdown state, and the
Finishing Operator is at the machine performing the repair. The down machine is colored red, and the up
machine is colored green. The screenshot on the right shows both Finishing Machines in the down state
(colored orange) for a quality check and the Finishing Operator is not involved.

o

é If you haven’t already done so, save the model. Recall that it is good practice to save often.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

14.7 State chart for each finishing machine

Previously, a state chart was created that showed the combined utilization of the finishing machines. We’ll add
a chart that shows the utilization of each machine.

» As shown in the figure to the right, resize the charts on the Uslization Dashboard
to make room for a third chart.

» The size of the pie charts can be changed through the Pée Siging propetty in the
chart’s Settings pane, e.g., set the Outer Radius to 75.0 (Thickness = 50.0).

» Note the new state, Breakdown, is shown in the composite state chart for the
finishing machines.

> Before creating the new chart, change the name of the FilingMachines dashboard
to Filling Machines Combined.

» In the Dashboard Library, select the Szaze chart type in the State section, then select Pie Chart from the
pop-up menu.

» Drag the selection to the dashboard workspace and resize the chatt to fit in the remaining space on the
dashboard.

» Name the chart Finish Machines.

» In the Objects section of the Options tab, click the button and choose the Select Objects option.
Then, select the category Processors and press Select. As a result, both FinishMach_1 and FinishMach_2 should
appear in the Objects section of the interface.

» In the Settings pane, set the Outer Radius to 50.0 and Thickness propetty to 20.

» Since the default color of the pie slices for Idle and Down states are quite similar, they may be hard to
differentiate on the chart. Therefore, change the Down state color as was done earlier and as shown in the
tigure below.

» In the Colors pane, scroll down to the “Down” states.
» Select the dropdown menu to the right of the state. This will result in displaying the color palette.
» Select orange for the Down state and adjust the colot’s A factor to 255.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

[]
Finish Machines
B Processing [Sewp dle Wati

ng

for operator [} Breakdown

o - Colors

Paktia

"Dreckdonn’
“Down®
*Starvec
Repair
*Maintznance®

“Luncn*

?

FEER

.|I|.||I||
R [| -
q e
s U -

More Colors..,

I

» Reset and Run the model run for 80 hours (4800
minutes). The results should be similar to that shown
in the figure to the right.

Based on this simulation run, the two Finishing Machines
are cach busy about 57% and 42% of the time,
respectively, or about 49% overall. These percentages
include the times the Processors are in the processing
and setup states (overall about 46.5% and 2.9%,
respectively). These values can be found by hovering over
the pie segments in the Finish Machines Composite chart.

The pie chart also shows the small percentage of the time
that they were in the breakdown (about 1.6%) and down
for quality check (about 4.6%) states. The remainder of
the time, the idle state, is when the machines were ready
and available but had nothing to process; in this case, that
is about 44.4% overall. Only a negligible amount of time,
were the Finishing Machines waiting for the Finishing
Operator.

The utilization of the Finishing Operator is the

Finish Machines Combined

W Processing |l Setup dle
Down

Finish Machines

Idie Wating for operato

sy [l Setug

FinishiMac:

-

FinishOperator

aced W Loading Inkoadng thize Idie

Waiting for operator Braakdown
g

\

W Breakdow

percentage of time the operator is busy, which in this case is about 14.1%. This includes traveling both loaded

with containers and unloaded, loading and unloading containers, performing setup operations (part of the

Utilize state on the chart), and repairing the Finishing Machines when they break down (the other part of the
Utilize state). In addition, the operator is in the On-break state about 6.25% of the time. The remaining 73%
of the time, the operator is in the idle state, ready and available, but has no tasks to perform.

=
g If you haven’t already done so, save the model. Recall that it is good practice to save often.

—u Use the Save Model As option in the File menu to make a copy of the existing model so that it can be

customized beginning in the next section. Again, you can use any file name, but the next model is referred

to as Primer_8 in the primer.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

PART IV - MODELING THE PACKING AREA

This section involves modeling the packing of finished containers with components.

e Chapter 15 first provides an overview of how the packing area works. Subsequently, component items are
defined, such as how and when they are created (in batches). A data table is created to store information

on the operation. Storage areas for the components are added to the model.

e Chapter 16 uses the Separator object to unpack batches of components when they arrive. The unpacking
task requires the Finishing Operator. The Combiner object is used to model the packing of containers with
components. A robot places components in containers. The Packing Robot is subject to state-based
downtime like the Finishing Machines, and the Finishing Operator performs the repairs. A time series plot
is added to show the inventory levels of the components.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

15 MODELING THE PACKING AREA - PART 1

Chapter 15 first provides an overview of how the packing area works. Subsequently, component items
are defined, such as how and when they are created (in batches). A data table is created to store

information on the operation. Storage areas for the components are added to the model.

The model from the previous section is extended to include a packing area. The following is an overview of
the approach to modeling the Packing Area, which involves twelve steps divided into two parts.

Part 1 — batches to components

1. Description of the packing area and modeling approach.

2. Flow items for components — represent each component as a separate type of flow item.

3. Store operation data in tables — use Parameters Tables to store each type of component’s batch
frequency (time between batches) and batch size. Storing values in data tables rather than in the
object facilitates conducting what-if analyses.

4. Create batches of components, i.e., components arrive at the Packing Area in specified quantities and
frequencies.

5. Provide a queue for batches to await processing, i.e., each batch waits in a queue/buffer for the
Finishing Operator to unpack the components.

6. Provide storage areas for components, i.e., each type of component has its place to be stored in the
Packing Area.

Part 2 — packing operation (the next chapter)

1. Provide a means to unpack components, i.e., each batch is unpacked into its storage area.

2. Define Finishing Operator tasks — the Finish Operator moves each batch from a queue to the
component’s storage area, unpacks the batch, and loads the components into storage for the packing
operation.

3. Containers arrive by conveyor, i.e., containers are transported from the Finishing Area to the
Packing Area via a conveyor; thus, they are processed in a first-in, first-out manner.

4. Pack containers based on their type — a mix of components is packed into each container based on
the container type. Component flow items are combined or packed into containers.

5. Pack containers by robot — a robot moves components from their storage area to containers. The
robot also removes containers from the incoming conveyor and moves containers to the outgoing
conveyor. Robots incur downtimes that the Finishing Operators address.

6. Check component inventory levels — use graphs to assess the effectiveness of the components’

replenishment parameters.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

15.1 Description of the packing area and modeling approach

In the packing area, finished containers are packed by a robot with components produced elsewhere. Again,
the model being developed in this primer is limited in scale since the focus is on the system's main elements.
Later, not a part of the primer, the main elements can be scaled up to represent the entire system. Therefore,
for the primer, only two types of components, referred to as A and B, are considered to be packed in the
three types of containers. Component A is a purple boxed-shaped item, and Component B is a white
cylinder-shaped item.

As mentioned before, a very important concept that bears repeating is that it is good modeling practice to
build smaller models first to test, validate, and verify the approach and methods, then scale up to represent
the real system.

For now, it is assumed that the components arrive at the packing area on a schedule and in batches, i.e., three
Component As arrive every hour, and five Component Bs arrive every half hour. In a later section in the primer,
the model is modified so that the components arrive based on current inventory levels and specified reorder
points.

Each component item will contain some information about itself — its type and batch size. This information is

stored in labels on the components. Labels are user-defined data that can reside in objects and items. They

consist of a label name and a label value. The value can be of various data types, such as numeric, string,

array, pointer, etc. In this case, for simplicity, only numeric values are used. The two labels that will be created

on each component are:

e For component type, the label’s name will be CompType, and its values will be 1 for A, 2 for B, etc.

Since we refer to the components as A, B, etc., we could store each item’s type as a string data type
and thus have values A, B, etc. However, for simplicity, component types are defined as numeric.

e For the component’s batch size, the label’s name will be Ba#chSize, which will have numeric values
such as 3 and 5.

An arriving batch waits for a Finishing Operator to travel to it. Depending on the workload of the Finishing
Operator and the frequency of batches, multiple batches might arrive and await the Operator. Therefore, a
small batch queue is included in the model. The Finishing Operator moves each batch to its component
storage area and unloads the components into the storage area.

At the packing station, a robot loads each container type with its mix of components.

One packing station should be enough to support two Finishing Machines.

The base model for the additions described in this chapter is Primer_7 that was saved at the end of
Chapter 14. However, a copy of that file was saved as Primer_8; thus, we begin with that file.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION / 72 AUTODESK

15.2 Flow items for components

The first step is to create two new flow items to represent components A and B. This is done via the FlowItem
Bin, which is accessed by the button on the Main Menu bar (to the right of the Tools button) or through the
Toolbox.

Create the first component as follows.

>

Duplicate the Box item by highlighting it in the list of flow items (Box,
Cylinder. Sphere, ...) and pressing the Duplicate the selected flow item

button (to the right of the button) and highlighted by the red box in the
figure to the right. The result is a new flow item at the bottom of the list called

“Box copy.”

Select the new item Box copy and in the Properties

interface, make the following changes. The result should

be as shown in the figure to the right.

>

>

>

>

Change the name of the item from Box cgpy to
CompA.

Change its color from brown to purple using the color
palette dropdown menu.

Change its size from the default values (x=0.67,
y=0.61, 2=0.3) to x=0.4, y=0.4, z=0.2.

Change the location to x=0.0, y=0.0, z=0.0.

Repeat the above process for the second component.

Test Tube
PilBottle
| Cantainer
v X Propefties *
- 3 | compa o
Ecit Packing Methods & O < |
| Visuals Compar e Properties 5 7
W | feld\General\Box. 3 - 2

_
/
X

v z

| 000 <10.00 le]0.00 =
i |

17 |0.00 %1 0.00 E;in.m

(o9 =T0.40 [z]0.20 >
Mere Yisuss

=) Labels 25 ?

FaXnix

> Duplicate the Cylinder item by highlighting it in the list of flow items (Box, Cylinder. Sphere, ...) and

pressing the Duplicate the selected flow item button (to the right of the button. The result is a new

flow item at the bottom of the list called “Cylinder copy.”

Select the new item Cylinder copy and in the Properties

interface, make the following changes. The result should

be as shown in the figure to the right.

>

>

Change the name of the flowitem from Cylinder copy
to CompB.

Change its color from brown to white using the color
palette dropdown menu.

Change its size from the default values (x=0.70,
y=0.70, z=0.8) to x=0.2, y=0.2, z=0.2.

Change the location to x=0.0, y=0.0, z=0.0.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

Ed Padang Methare

———— | | 1# | 0,20

v X Properlies x
a | - >

& @ [come =7)
-| Visuals 5 ?

W | i GereralCyindsr, 3ds - 2

) 0.co =} 0.00
-

Joc0 =
5 0.0 sl 0.00 [:gl.cu b=

slo [#]o.0

- Labels Pai™ 2]

a> % 4 4

»2 AUTODESK

15.3 Store operation data in tables

The frequency of batch arrivals (time between arrivals of batches) and batch size vary by container type. Both
of these factors are likely to be important operational considerations in the overall system design. Therefore,
the frequency and batch size will be stored in Parameters Tables so they can be easily changed to evaluate
alternatives.

Two Parameters Tables are used to store values for these factors — one for the frequency of each batch's
occurrence and the other for the size of the batch. The parameters could all be in one table, but using separate
tables makes updating and adding information on new components easier. Using separate tables also facilitates
importing the data into the model through MS Exvel.

For the first table:

» Create a Parameter Table for the frequency of batch arrivals by clicking the button at the top of the
Toolbox, sclecting Statistics, and then selecting Model Parameters Table.
» In the Properties window, change the name to ComponentFrequency.

As shown in the figure to the right:
» Increase the Parameters value to 2.

. #% Model ‘== Componentrrequency
» Change the Name in each row from Parameter! and
Parameters : S | X 4
Parameter? to CompFreq_A and CompFreq_B. — — e —
» For each component, use the Value dropdown | Comefrear S0] e
A CompFreq_B -
interface to change Lower Bound to 30 and Upper Type IS v
. . . Lower Bound 30 v
Bound to 360, respectively. This allows the time Umrawnd
] pper Boun 360 v
between batch arrivals to be set between 30 and 360 Reference [one |2
minutes. If a user tries to set the value outside of On Set [%+ @ &
this range, an error message is displayed.

» Set the Values for CompFreq_A and CompFreq_B to 60 and 30, respectively.

For the second table, repeat the steps above:

» Create a Parameter Table for the frequency of batch arrivals by clicking the button at the top of the
Toolbox, sclecting Statistics, and then selecting Model Parameters Table.
» In the Properties window, change the name to ComponentBatchSize.

As shown in the figure to the right:

» Increase the Parameters value to 2. T ol EPGRSEEIESS

» Change the Name in each row from Parameter] and | paameters EEX
Parameter2 to CompBatSz_A and CompBatS3_B. Name Value [Pispiay Units Desaiption

CompBatSz_A 3| -

» For each component, use the Value dropdown | |compsas:s !
. Type Continuous v
interface to change the Lower Bound to 1 and Upper Loner Bourd 1 -
Bound to 100, respectively. This allows the batch Upper Bound | 100 v
sizes to be set as low as 1 and as high as 100. If a Reference [None |”

. . . On Set []f @S

user tries to set the value outside of this range, an
error message is displayed. ZIT0R

» Set the Values for CompBatSz_A and CompBatSz_B to 3 and 5, respectively.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION ‘ 72 AUTODESK

— N
If you haven’t already done so, save the model. Recall that it is good practice to save often.

15.4 Creating batches of components

Each batch of components needs to be created by a Source.

For component A:

» Create a source for component As to enter the model by dragging out a Soutce object.
» Rename the Source CompA.

As shown in the figure to the right, in the Visuals pane, & [1 12 @

» Set the sige to x=0.25, y=0.25, x=0.25. et 72
This does not affect the model’s performance; it is just | Template =l
made smaller to be less apparent. Since the Sources are | = 2! = ?

. , fs3d 3d -
not a physical part of the system, they could be hidden, o | s3d Sorce Surce 3 | ;
but we’ll keep them small but visible. _X v .

» Set the location to x=10.0, y=10.0, x=0.0. Qoo oo [foo E
At this point, the location is not critical, and the object |V [0.00 <[00 [0 E
could just be moved around on the modeling surface, but | [0 Jelo2s Jelo2s E
for consistency, we specify the location. Mare Vinsks

-] Labels 258 ?
. . . waXxXt s
As shown in the figure to the right, in the Labels pane, create — 1
. . . . omplype
two Ob)CCt labels, which will contain user-defined data. BatchSize Model.parameters.CompBatSz_A
. & [J Automatically Reset Ba B3

» Create the first label by using the button and | T ; R
selecting Add Number Label. +] Output & 2

» Change the name of the label from /abell to CompType.) L

. =| Triggers 2

» Since this object creates Component As of, in numerical

terms, Component 1, set the value to 7. ¢ “|setiabel X
_[Object | item -2
. “ | Label ["CompType” <

» Create the second label by using the button and - s
selecting Add FlexSeript Label. Vae |current. CompType ~ s

» Change the name of the label from /abell to BatchSize. I / . X

i} Set Label
» The batch size is stored in a Parameters Table so the
. . - Object |item - /0
value is the FlexSeript command that references the | : g g
. . . . Label BatchSize - /0
appropriate cell in the table, which is
Value | current.BatchSize - 2
Model.parameters.CompBatSz_A
Be sure to enter this value correctly. o

When a batch item is created, it will contain the same two labels as those defined above for the logic. The labels
are added through triggers that fire when an item is created. Therefore, in the Triggers pane:

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 30 72 AUTODESK

Create the first label trigger, which will add a label to the item being created, and its value will be the same as

the value on the Source object. Basically, the Source creates items that are of Type 1.

» Press the button under Triggers and select On Creation.

» Press the button to the right of the On Creation text box, select Data, and then Set Label.
» Complete the Set Label dialogue box as shown in the figure above — leave the Object value as iten, change
the Labe/to “CompType”, and change Value to current. CompType.

Create the second label trigger, which will add another label to the component item being created, and its value

will be the same as the value on the Source object. Basically, the Source creates items that have the batch size

for Type 1 components.

» Press the button at the bottom of the Set Label dialogue box, select Data, and then Sez Label.
» Complete the Set Label dialogue box as shown in the figure above — leave the Object value as iten, change
the Labe/ to “BarchSize”, and change Value to current.BatchSize.

Update the properties in the Source pane as
described below and shown in the figure to the
right.

» Using the drop-down menu, change the
Flowltem Class property from the default
Box to CompA. In this case, a batch will be
represented by one component, although a
different flow item could be used to visually
represent a batch.

» Change the InterArrival Time by using the
dropdown menu button to the right of the
value; select from the cascading submenus

-l Source

FlowItem Class | CompB

Arrival Style Inter-Arrival Time
[Arrival at time 0

Inter-Arrival Time
Model.parameters.CompFreq_B

=
Parameter

[#l§ Statistical Distribution
Values By Case
1 By Global Table Lookup
% By Percentage
Periodic Rates
By Time of Day
Batch Processing
+3} ProcessFlow: Execute Sub Flow

Different Time for Nth ltem

min i ¥}

v

HI T HE

v

v

& ?

5/
FinishTimes > |
ComponentFrequency > CompFreq_A
ComponentBatchSize > CompFreq_B

Parameters, then ComponentErequency, then CompEreq_A.

This results in an Inter-Arrival Time value of Model parameters.CompFreq_A, which will return the value

stored in the Parameters Table; in this case, 60 minutes.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

For Component B

& l CompB l T:g (7]

» Create a source for component Bs to enter the model by | seustis 72
dragging out a Source object. +] Template & 2
-] Visuals By 2
» Rename the Source CompB.
5‘ fs3d\Source\Source. 3ds - /0
. L . I -
As shown in the figure to the right, in the Visuals pane, X Y z
> Set the sige to x=0.25, y=0.25, x=0.25. Qoo flon oo [
Again, this does not affect the model’s performance; it is just |~ (000 III = l:| = l:
v |0.25],[o.zs],lo.zs],
made smaller to be less apparent. :
More Visuals
» Set the location to x=15.0, y=10.0, x=0.0. e T X

Again, at this point in the modeling, the location is not critical, |42y x ¢+ § #

but for consistency, we specify the location. CompType 2
BatchSize Model.parameters.CompBatSz_B
. . . [J Automatically Reset Ba By
As shown in the figure to the right, in the Labels pane, create two | source X
object labels, which will contain user-defined data. Flowltem Class | CompB v !
. h . Arrival Style Inter-Arrival Time v
> Create the first label by using the button and selecting .Add
Arrival at time 0
Number Label. Inter-Arrival Time
» Change the name of the label from /abe/l to CompType. Modelparameters.Comprea 8 mn v &/
. . : . . +| Output ?
» Since this object creates Component Bs or, in numerical terms, j — =
Component 2, set the value to 2. g
4| setLabel A
(Object |item v /0
» Create the second label by using the button and selecting [Label |"CompType" -2
Add F/eXS(ﬂpf Ldbe/ Value current.CompType v /'
» Change the name of the label from /abell to BatchSize.
» The batch size is stored in a Parameters Table so the value is “| setabel ~
the FlexSeript command that references the appropriate cell in |y | Obiect [item -/
the table, which is. - Label |BatchSize” - 2
Model.parameters.CompBatSz_B R = catchsi= d

Again, to avoid errors, be sure to enter this value correctly.

As in the first Source, triggers are used to create labels on the batch item when it is created.
Create the first label trigger, which will add a label to the item being created, and its value will be the same as
the value on the Source object. Basically, the Source creates items that are of Type 2.

» DPress the button under Triggers and select On Creation.

» Press the button to the right of the On Creation text box, select Data, and then Sez Label.
> Complete the Set Label dialogue box as shown in the figure above — leave the Object value as iten, change
the Labe/to “CompType”, and change Value to current. CompType.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

Create the second label trigger, which adds another label to the component item being created. Its value will be
the same as the value on the Source object. Basically, the Source creates items that have the batch size for

Type 2 components.

> Press the button at the bottom Set Label dialogue box, select Data, and then Sez Label.
» Complete the Set Label dialogue box as shown in the figure above — leave the Object value as item, change
the Labe/ to “BarchSize”, and change Value to current.BatchSize.

Update the properties in the Source pane as
described below and shown in the figure to the
right.

» Using the drop-down menu, change the
Flowltem Class property from the default
Boxto CompB. In this case, a batch is visually
represented by a single component.

» Change the InterArrival Time by using the
dropdown menu button to the right of the
value; select from the cascading submenus
Parameters, then ComponentErequency, then
CompFreq_B.

-) Source
FlowItem Class | CompA
Arrival Style Inter-Arrival Time
Arrival at time 0

Inter-Arrival Time
Model.parameters,CompFreq_A

Parameter

Statistical Distribution
Values By Case
£ By Global Table Lookup
% By Percentage
Periodic Rates
By Time of Day
Batch Processing
+1 ProcessFlow: Execute Sub Flow

Different Time for Nth Item

T e g

FinishTimes > |
Componentfrequency > CompFreq A
ComponentBatchSize > CompfFreq_B
. o
/'

L]

4

X
#

2

This results in an Inter-Arrival Time value of Model.parameters.CompFreq_B, which will return the value

stored in the Parameters Table; in this case, 30 minutes.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

15.5 Queue of batches awaiting processing

A Queue is now added to the model to store the batches of components until they are unpacked by the

Finishing Operator.

» Drag out 2 Queue object from the Library and place it between the two Soutces that generate batches of

components.
» Name the Queue BatchQuene.

Modify the Queue’s Visuals pane as shown in

the figure to the right and described below.

» For the color propetty, select gray from the
drop-down menu.

» Set the Location values to x = 12.50 and y =
70.00, which puts the Queue between the
two component Sources.

» Set the Sige parameters to x = 0.50, y = 0.50,
and g = 0.05. so the Queue is just a bit larger
than the components.

> Rotate the Queue -90 degrees about the z-
axis. The flow to/from the queue is
up/down not left/right; i.e., packing occurs
below the queue in the layout.

Modify the Queue’s Queue pane as shown in the

figure to the right and described below.

> Set the
Horizontal Line so the batches form a single

Item Placement property to

line, and since the Queue is rotated, the line
of batches will form away from the Packing
Area.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

chQueue
[]

a [BatchQueue [T:g (7]

+| Statistics 2 ?

+] Template Help 4% 2 i

~| Visuals i sl

(- t fs3d\Queue\Queue. 3ds [- X f
X Y Z .

(:Jlu.so 1:!5.-00 [0.00 El

5 [0.00]:[0.00 }:I -50.00 E

v [0.50 [[o.50 [0.0 =l

More Visuals

+ Labels Yl

-J Queue 2 2|

Max Content | 1000 ‘

Item Placement Horizontal Line v

Stack Base Z [0.10 |m

[Juro

[C]Perform Batching

+] Output = 7|

| Input oy ?

+| Ports

+| Triggers

»2 AUTODESK

15.6 Storage areas for components

Each component type has its place to be stored in the Packing Area. Batches of components are unloaded to

the storage area, and a robot selects components from the storage area to be packed into containers.

Therefore, a separate Queue is used for storing each component type. Since their properties are very similar,
it is easier to set up one and then copy, paste, and edit it to create the other.

Create the first component’s queue.
» Drag out 2 Queue object from the Library and place it near the first component’s Source.

» Name the Queue StoreCompA.

Modify the Queue’s Visuals pane as shown in the figure to the right and

described below. @ [storeCompa |1 T2 @)
» Using the dropdown menu, set the 3D shape to a Plare. After the [=2200 Zxrl}
. .) . +] Template R 2
selection, the text box should contain f53d/ General/ Plane.3ds, which | visuals = 2
is the FlexSim image file for a plane. \o [fs3d/General Plane. 3ds |~ 2
» For the color property, select purple from the color palette in the I -
. X Y z
drop-down menu. The Queue is now the same color as the |[wo [s[2s0 [2] .00 E
component it stores. o [0.00 s 0.00 [<[0.00 s
> Set the x, y, and z Location values to 10.00, 2.50, and 1.00, |l F[2e [foeo [
respectively. More Visuals
. . . . + Labels Pl
Note that the g location value is 1.0; i.e., the queue is located one | queue = 2
meter above the floor. This is better ergonomically for the Finish |uaxcontent 1000
Operator. Later, a visual object — a non-functional object — will be |rempiacement |stackInside Queve v
added so it appears that the storage location is on a table, not in mid- [StackBasez 0.10 =
air. This does not affect the system’s performance but looks more)=
.. [CJPerform Batching
realistic. +| Output £y ?
The table object is added later because it will be used in several [mput 2 2
places in the model.) Ports ?
+] Triggers

» Set the x, y, and g Sige values to 1.00, 2.00, and 0.00, respectively.

Create the second component’s Queue.
» Copy and Paste the StoreCompA Queue by either of the following methods:
e Select (click on) the Queue, press the C#/-C keys, click somewhere on the modeling surface, and then
press the C#rl-1” keys.
e Right-click on the Queue, select Edit from the menu, then
select Copy. Right-click somewhere on the modeling surface,
select Edit from the menu, and then select Paste.
» Change the name of the Queue to SreCompB.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 35 72 AUTODESK

o R . .
Modlfy the Queue’s Visuals pane as shown in the figure to the right and & [Sorecoms .12 @
described below. ' I St 77
> TFor the color property, select white from the color palette in the [remplate P 2
drop-down menu. The Queue is now the same color as the |- visuals P9
component it stores. "fs3d/'Genera|/p|ane_3ds ‘ - 2
» Set the x, ¥, and g Location values to 15.00, 2.50, and 1.00, - 2
respectively. X Y z
@]15.00 [2] 2:50 2] 1.00 E
O | 0.00 2] 0.00 2] 0.00 E
v [1.00 2] 2.00 [2] 0.01 E
More Visuals
+| Labels 2 ?
-J Queue &y ?
Max Content [1000 ‘
Item Placement Stack Inside Queue v
Stack Base Z [0.10 |m
[Juro
[Jrerform Batching
+| Output By ?
+| Input &y ?
+] Ports 2
+| Triggers
» Reset and Run the model. Validate that the arrivals of the
component batches occur as expected; one batch of component As
arrives every 60 minutes, and one batch of component Bs arrives -
every 30 minutes. n
—
To the right is a screenshot of the model just after two hours of o‘f“:;:‘l:_As BatchQueue 0%::::3-85
. . . 2 CurContent: 8 X
simulated time showing the expected queue contents — three batches Blocked: 0.0% paxContent: 8 Blocked: 0.0%
AvgStaytime: 0.0
of As and five batches of Bs. R
Select one of the Component Bs in the batch queue. Its label value
should be as shown below.
2o | CompB ‘ =0
| +] Template B 2 |
+| Visuals &y ?
-] Labels 2055 ?
Xt I A o
|
CompType 2
| ‘Batchsize | 5 StoreCompA StoreCompB
| (] Automatically Reset EFYES)
-l Triggers ?
,u‘.z v

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

Also, check the overall state of the model, as shown in the figure below. At its current stage of development,
the Packing Area needs to be completed; batches only arrive as per the prescribed schedule. Also, it is not
connected to the Finishing Area. Both of these issues are addressed in the next chapter. Again, this
illustrates validating and verifying as a model is developed.

e—
CompA
Output: 0
Blocked: 0.0%

e 8T

StoreCompA StoreCompB————— =

s 5

o ey Z e B B, oy o NextProcess
BTbel._&O%\ ~p_ FinishOperator_1 Input: 0
. X 0.0 Output: 0
Sink1 = o ng: 0.0 Status: idle
Input: 0 \ = 9: O

ContainerStorage

=] If you haven’t already done so, save the model. Recall that it is good practice to save often.
d |

¥ Use the Save Model As option in the File menu to make a copy of the existing model so that it can be
customized beginning in the next section. Again, you can use any file name, but in the primer, the next model
is referred to as Primer_9.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 37 72 AUTODESK

16 MODELING THE PACKING AREA - PART 2

Chapter 16 uses the Separator object to unpack batches of components when they arrive. The
unpacking task requires the Finishing Operator. The Combiner object is used to model the packing of
containers with components. A robot places components in containers. The Packing Robot is subject
to state-based downtime like the Finishing Machines, and the Finishing Operator performs the repairs.
A time series plot is added to show the inventory levels of the components.

This chapter is a continuation of the previous chapter and completes the modeling of the packing area. The
steps needed to do so are as follows. Each step is discussed in the following sections.

1. Unpack components — each batch is unpacked into its storage area.

2. Finishing Operator tasks — the Finish Operator moves each batch from a queue to the component’s
storage area, unpacks the batch, and loads the components into storage for the packing operation.

3. Containers arrive by conveyor — containers are transported from the Finishing Area to the Packing
Area via a conveyor; thus, they are processed in a first-in, first-out manner.

4. Packing containers by type — a mix of components is packed into each container based on the
container type. Component flow items are combined or packed into containers.

5. Packing containers by robot — a robot moves components from their storage area to containers. The
robot also removes containers from the incoming conveyor and moves containers to the outgoing
conveyor. Robots incur downtimes that are addressed by the Finishing Operators.

6. Check component inventory levels — assess the effectiveness of the components’ replenishment

parameters using graphs.

The base model for the additions described in this chapter is Primer_8 that was saved at the end of
Chapter 15. However, a copy of that file was saved as Primer_9; thus, we begin with that file.

16.1 Unpack components using the Separator object

Each batch of components, represented as a single item, is split into the number of components in a batch.
This is accomplished by using the Separator object. Since the customized objects will be very similar, the first

object is created and customized, i.e., for Component A, then it is copied, and the copy is edited for Component
B.

Create the first component’s Separator.

Drag out a Separator object from the Frxed Resources section of the Library and place it near the first
component’s storage, StoreComp_A.

» Name the Separator UnpackBatch_A.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 38 72 AUTODESK

Modify the Separator’s Visuals pane as shown in the figure to the right | Propertes x

and described below. & [Urprddath A |+ 12 @
. -/ Statistics 22
» Using the dropdown menu, set the 3D shape to a Plane. After the | rompiate = 2
selection, the text box should contain fs3d/ General/ Plane.3ds, which | = wisuals o2
is the FlexSim image file for a plane. | Eoumipthe A
X Y r4
» For the color property, select purple from the color palette in the |10 2 4.00 [£]0.00 :
drop-down menu. The Separator is now the same color as the |% % | 200 = 0% =
. | 100 +| Lo 2] .00 =
component it stores. ‘
More Visuals
. +| Labels Pl
» Set the x, 9, and g Location values to 15.00, 4.00, and 0.00, | . scparator 2
respectively. Thus, the unpacking area is just behind the component’s [sesaratescde spit
storage area. Sty
Model.parameters.CompZatsz A v@Z S,
=| Processor ?
» Set the x, y, and g Sige values to 1.00, 1.00, and 1.00, respectively. S, ClammeleTion
Setup Time
min ¥ "
[Juse Operator(s)
Process Time
m v '/‘
[[Juse Operator(s) 1 Same 28 Selup
=/ Output x?
Modify the Separator’s Separator pane as shown in the E— =7
tigure to the right and described below. Separate Mode |Splt v
» Change the Separate Mode from UnPack to Split Quantty
. R Model.parameters.CompBatSz_A v &
using the property’s dropdown menu. S FinishTimes > s EE
E ComponentFrequency > ‘ Entica Contante Ttems
. . . = C tBatchSi > CompBatSz_A
» Change the Quantity from EntireContents using the | T C°mp -
ompBatSz_B s v 2
property’s dropdown menu. Select Parameter, then [Values By Cose
ComponentBatchSize, then CompBatSz_A. This results pri (51 By Global Table Lookup
. h 1 bei 1t % By Percentage v 2
n the property value elng | * 1 ProcessFlow: Execute Sub Flow § setup
Model.parameters.CompBatSz_A, which is the Yo =7

current value stored in the Model Parameters
Table.

While not used in this case, be aware that the Separator not only splits an item into multiple items but can
unpack a container item that holds other items. This is analogous to unpacking the contents of a box. When in
unpacking mode, the Separator, by default, routes the container out of Port 1, and the unpacked items are
routed out of Port 2.

In addition to the splitting and unpacking modes, the Separator also acts as a Processor; i.e., it contains all of
the capabilities of a Processor. After entering, an item is delayed for the time specified by the Setup Time and
Process Time.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 35 72 AUTODESK

Therefore, modify the Separator’s Processor pane as shown in the previous figure above.

» Uncheck the Animate Items box, which by default is checked. If checked, items move across the object

from one end to the other during the processing time. Since the batch of items does not move, we do not

use the animation.

» Change the Process Time from the default value of 70 to 0.5 minutes; i.c., it takes about 30 seconds to

unpack the three Component As in a batch.

Later in the primer, we’ll use a label to store the batch size on the item and then calculate the processing

time based on a constant plus so much time for each component.

Create the second component’s Separator.

» Copy and Paste the UnpackBatch_A Separator by cither of the following methods:

e Right-click on the Separator, select Edit from the menu and then choose Copy. Right-click somewhere

on the modeling surface, select Edst from the menu, then select Paste.

e Select (click on) the Separator, press the C#/-C keys, click somewhere on the modeling surface, and

press the C#-1” keys.

» Change the name of the Separator to UnpackBatch_B.

Modify the Separator’s Visuals pane as shown in the figure to the right
and described below.

» Change the color property to white from the color palette in the drop-
down menu. The Separator is now the same color as the component
it stores.

» Set the x, y, and g Location values to 15.00, 4.00, and 0.00,
respectively. Thus, the unpacking area is just behind the component’s
storage area.

Modify the Separator’s Separator pane as shown in the figure to the right
and described below.

» Change the Quantity using the property’s dropdown menu. Select
Parameter, then ComponentBatchSize, then CompBatSz_B. This results in
the property value being Model.parameters.CompBatSz_B, which is
the current value stored in the Model Parameters Table.

Modity the Separator’s Processor pane as shown in the figure to the right
and described below.
» Change the Process Time to 0.6 minutes; i.e., it takes about 36
seconds to unpack the five Component Bs, which is a little longer
than it took for Component A.

Propertiss
W npacsatch B
+| Statistics

+] Template
=) Visuals

~ [f;ikj';?icm';;l}—(nn: > ":"

X Y

=2 15.00 :[4.00
.
(5 0.00 3] 0.00
¥ Loo =] 1.00
More Visuals
+| Labels
~=| Separator
Seperate Mode | Split
Quantity

Model parameters,CompBatSz_B

-| Processor

Setup Time

[TJuse Operatec(s)

Process Tme

["luse Operator(s)

| Output

:f n)_ljlj
5 0.00

| 100

[A Animate Ttems

KISR0

2
%2

- GF

7

= ?

1 ,
N v

N
If you haven’t already done so, save the model. Recall that it is good practice to save often.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

16.2 Finishing Operator tasks

The Finishing Operator moves each batch of containers from the common batch queue to the container’s

storage area, unpacks the batch, and loads the containers into their storage area. This section primarily

involves connecting objects.

First, make the flow connections between the objects in the Packing
Area using A-connections, i.e., connecting two objects while holding
down the A key, as shown in the figure to the right. Recall the order in
which the connections are made determines the direction of flow. Also,
note that the A-connection creates the output port on the batch Queue

and the input port on the Combiner.

Therefore, as shown in the figure to the right:

» Connect Batch Quene to UnpackBatech_A.
» Connect Batch Quene to UnpackBatch_B.
» Connect UnpackBatch_A to StoreConpA.
» Connect UnpackBatch_B to StoreConpB.

Note in the figure to the right, as shown in the
Ports pane, the input ports for the selected
object, BatchQuene, are the Sources CompA and
CompB.

Output: 0
Blocked: 0.0%

- UnpackBatch B
Dutput: 0

T Rtdle: 0.0
“HProcessing: 0.0
StorsCompA StoreCompB
v X |Frapertes ®
= & | BatchQuene 4ok)
1] Statistics 71
=g 4] Temgplate)
c: 2| Visuals 3 7
om:.':.ao 4 Labels 2%
Blocked: 0.0% | Queue e 2
+J Output % 2
) Inpmt T 7
-] Ports ?
Tngut Perts -
L Comod o
= Comes P
L]
“
X
L]
»
| Triggers ?
- “
UnipackBatch_B
Output: 0
Sidio: 0.0
Processing: 0.0
StoreCompB

Next, connect the Dispatcher FinishOperators object with each object requesting tasks

(transport and

processing). These are communications connections or S-Connections, not flow connections, i.e., the objects’

center ports are connected. Recall the order of connection does not matter in this type of connection.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Make the following connections. Once the connections are complete, the | . x
. . FinishOperators (7]
resulting Ports pane for the Dispatcher should resemble the figure to the — - -
. +| Statistics 2 ?
rlght. +] Template N 2
» S-Connect the Dispatcher FinishOperators to the Batch Quene. Ele 5
+] Labels Vo=
+| Dispatcher v ?
» S-Connect the Dispatcher FinishOperators to each Separator |/=Perts _?
| v
UnPackBatch A and UnPackBatch_B. S |
1: ContainerStorage o
2: FinishMach_1
3: FinishMach_2 ./‘
4: BatchQueue t
5: UnpackBatch_A
6: UnpackBatch_B 3
X
#
| Triggers ?

Next, associate the Dispatcher FinishOperators object with each object requesting tasks (transport and

processing).
In the Output pane of the BatchQuene object, as shown in the figure to the @ [ichcuene 1 12 @
rlght, +| Statistics 7 ?
» Using the dropdown menu, change the Send To Port propetty from |4 Template 2R ?
. . . . +] Visuals &y ?
First Available to By Expression, then change the default zen. Type to |7 7 1
wtem.CompType. This will route a batch to the Queue’s port, whose |giyx ¢ 8 #
1 > . I I
number is the value of the component’s type as defined by the label |5, - = 22 B
CompT]pe. +| Queue o 2
=) Output &y ?
send To Port
By Expression v % 3
item.CompType - /0
=
Priority Preemption
0 Do Not Preempt v
+| Input e ?
+] Ports 2
-] Triggers 2
e v
» Check the Use Transport box. See the completed Output pane in the [output & ?
1 1 Send To Port
figure to 7 tbe right. - Accept the defa.ult setting, |=ERT C o
current.centerObjects[1], which means the Queue will choose the |5, 1o !
object connected to its first center port, the Dispatcher, to move the |current.centerobjects[1] 28/,
item to the next object. oy poeeen
Do Not Preempt v

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

In the Processor pane of the Separator UnpackBatch_A,

» Check the Use Operator(s) box below the Process Time. I Processor 3]
A3y O O avizate 1ters
. . . Setup T
> See the completed Quiput pane in the figure to the right. As with the [T
Queue above, accept the default setting, current.centerObjects|[1], | Cus:operatorts) |
which means the Separator will choose the object connected to its ~ |Frocess me .
. . . nv
first c.enter port, the Dispatcher, to perform the separation AN
operation. Bibraior
currenl centes Objecls(1) v 4 5,0
Prioeny Precmption
‘ o Co Not Preenpt

Repeat the above steps in the Processor pane of the Separator UnpackBatch_B,
» Check the Use Operator(s) box below the Process Time.

N
If you haven’t already done so, save the model. Recall that it is good practice to save often.

Reset and Run the model. Observe the activities of the Finish Operator.
> Slow down the Run Speed to about 0.5 using the slider or dropdown menu.

Note in the model as in the following figure.
1. The operator moves batches from the BazhQue to the correct Separator and then is delayed until the
components are unpacked.

2. Components accumulate in their storage area. Currently, none are being consumed because the packing
operation has not yet been modeled; that is coming in a subsequent step.

3. The location where each type of component is unpacked is a square on the floor, but the batch is positioned
at about waist height (1 meter). In a later step, a non-functional visual object, a table, will be placed on the
square on the floor, and the batch will appear as sitting on the table. The same type of object will be
positioned under each component storage area.

4. 'The operator is unconstrained in its travel — it takes the shortest path between objects, ignoring any objects
in the way on that path. This will be corrected later.

By default, Task Executers travel the shortest distance between objects and ignore any objects in the
path. However, that can easily be corrected in one of two ways — using path networks to define travel paths
or the A* tool that defines barriers or objects to be avoided and then finds the shortest path between
objects by avoiding the barriers.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 43 72 AUTODESK

-
UnpackButch B
Output: 507

Sildle: 964
WProcessing: 2.1

—

C -
Ougput: 11 .
Blocked: 0.0% S

16.3 Containers arrive by conveyor
Just to get the Packing Area operational, we add a simple conveyor to move containers from the Finishing Area to the

Packing Area. A more detailed conveyor system will be added later.

» Drag out a Straight Conveyor from the Conveyor section of the Library. Click near the Finishing
Machines. This is the starting point of the conveyor; click near the Packing Area to end the conveyor. There

is no need to be very precise because the object’s size and position can be easily changed.

» Name the conveyor section FinishToPack.

5 | FinishToPack ‘ =K2
» As shown in the figure to the right, reposition the conveyor using 4] Statistics)
the parameters in the Conveyor pane of the FinishToPack object. +) Template R ?
+| Labels PR]
=) Conveyor &y 2
> A
Y
Start |-5.oo 2 I—O.SO ‘:[1.00 |:

|

end [wo0 [f[os0 [ffro0 2 o
Location ‘ -5.00 ‘: ‘ -0.50 ‘:[1.00]:
Width [t m
Horizontal Length [1500 |m

[Jvirtual Length 10.00

Visualization RollerConveyor v | gl
Roller Skew Angle D

+] Conveyor Behavior e d
+| Groups Help ?|
| Triggers Help 2
ae v

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 44 72 AUTODESK

» Disconnect both Finishing Machines from the Sink Next Process by using the Q-Disconnect, i.e., hold
down the Q key, select a Finish Machine Processor, and then

select the Sink. o | FinishMach_t |1+ T8 Q“
An alternative approach, as shown in the figure to the right, is to select | Statistics 72
.o +] Template o2
the Finishing Machine FinishMach_1, then in the Ports pane, select T T
Output Ports, then choose the port to delete, 7: NextProcesses in this case, | L Labels 222
x +| Processor &y ?
then select the “** button to delete the port and thus the connection. 4 Output A 2
+| Input o2
L. +] Groups 2
> Repeat for FinishMach_2.) Ports ?
[output Ports |~
i
/O
t
4
X
M |
=) Triggers Help 2 |
G v
On Reset
lSet Object Color l HP®EX

» A-connect each Finishing Machine to the
Conveyor FinishToPack.

Notice, as shown in the figure to the
right, when objects are connected to a
conveyot, a new object is automatically
created, a transfer object. If an object

provides input to a conveyor, the new

object is an Entry Transfer, and if an

| [1ret Poria

1 Pt
= Prostoech 2

object receives output from a conveyor,

the new object is an Exit Transfer.
The figure also shows the object
propetties of an Entry Transfer and a

red container being transported on the

conveyofr.

» A-connect the Conveyor to the Sink Nex/Process. Note that an Exit Transfer is automatically created on

the conveyor.

é If you haven’t already done so, save the model. Recall that it is good practice to save often.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

16.4 Packing containers by type using a Combiner object

Now that the components have been created and are available near the packing station, they can be packed
into containers. This is done through FlexSin's Combiner object, which is the object that puts components
into containers. As the name indicates, it combines flow items. The Combiner is the “complement” of a
Separator — the Combiner packs items into containers, and the Separator removes items from containers.
The Separator also splits or copies items, as was described in an earlier section.

The Combiner object can operate in three modes specified by the Combine Mode property on the Combiner

pane.

e Pack, the default mode option, allows items to be combined so they can be separated later. In this case, all
flow items received through input ports 2 and above are placed 7z the item that enters port 1, referred to
in general as the container item.

e Join combines the items permanently. The flow item entering port 1 is the only item that exits the
Combiner once all of the components have been gathered.

e Batch releases all items that are collected based on the quantities specified in the Components List.

In terms of processing, the Combiner is similar to the Separator in that it contains all of a Processor's
capabilities. Once all items that will be packed into a container have been collected by the Combiner, a delay
is incurred that represents the time to combine the items. After the delay, the packed container is released to
the next object. Like the Processor, the Combiner includes Setup Tzme and Process Time.

Add and customize the Combiner for the packing operation.
Drag out a Combiner object from the Fixed Resources section of the Object Library onto the modeling
surface.

» Name the Combiner, Packing 1.

» Disconnect the Conveyor section prior to packing, named FinishToPack, from the Sink NexzProcess. (Recall
that disconnecting objects is done using either a Q-disconnect or the Ports list in the object.)

» A-connect the Conveyor to the Combiner.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» Drag out a new Straight Conveyor section and update its propetties |propertes x
as shown in the figure to the right. 2] | PackToMext |1 T2 @
.] Statisti 72
e Name the conveyor section PackToNext. = Temp.:z o 7
e Use the default Horigontal Length of 10.0. 4 Labels =
A . -] Conveyor &2y ?
e Place the conveyor on the layout after the packing station. See the -2
figure to the right for the settings. X Y z
Start [13.50]:[-0.50]:[1.00 |‘
End EECEE
Location [13.50]:[-0.50]:[1.00]:
Width 1.00 m 1
» A-connect the Combiner to the new Conveyor, PackToNext. Horzontallength [10.00 |m
[virtual Length 10.00 m
» A-connect the Conveyor, PackToNext, to the Sink Nex#Process. — S e Ly
Roller Skew Angle |0
+| Conveyor Behavior B ?
+) Groups 2]
= Triggers ?
As shown in the figure to the right, update the following properties in |Propertis x
the Combiner’s Visuals pane. W [Poding.. |1+t @
. . +) Statisti 22
» Change the Combiner’s 3D Shape propetty to Plane.3ds using the ﬂTemph': =2
dropdown menu. Once the plane is selected from the dropdown list, | visuals 2 2
the value should be fs3ds/ General/ Plane.3ds s fs3d/General/Plane. 345 -/
» Change the Combiner’s size to x=2.00, y=2.00, £=0.00 . § . e
» Change the Combiner’s location to x=72.50, y=-0.50, z=1.00. This |5/ 2% [050 [¢[1.00 E
should position the packing station between the two conveyors. Of |22 =00 [0 E
. . . . v |2.00 :[2.00 J:[o.oo J,
course, the precise location can be adjusted once all of the objects :
are in place. The g value of 7.00 positions the plane at conveyor | More Ve ——
. + La By ?
helght. +] Combiner e 2
» Change the color propetty from yellow to gray. Bl = ?
+| Output R ?
+| Input By ?
+] Ports 2
+| Triggers ?

Connect the input objects associated with the Combiner, i.e., those that are being combined.
» Make an A-connection from the Queue SwreCompA to the Combiner Packing 1.
» Similarly, make an A-connection from the Queue SzoreCompB to the Combiner Packing 1.

The first input connection to a Combiner must be the object that supplies the container items, those in which
other items are packed. For each additional connection that is made to a Combiner, a row is added to its
Components List, which is on the Combiner pane. The list is like a recipe for what to combine with the
container. The Target Quantity is the number of items to collect from each port.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 47 72 AUTODESK

In our example, input Port 1 receives the container arriving on the Conveyor FinishToPack; Ports 2 and 3

receive items from two Queues, StoreCompA and StoreCompB, respectively. The default quantity is one item

from each, which can be edited in the Components List. However, in our case, the list will vary by container

type and thus must be updated dynamically based on the type of container that enters the Combiner.

One way to verify the port connections on any object is to examine the
Ports pane of an object. The figure to the right shows the input to the
Combiner from ports 1, 2, and 3, which are from the ExitIransfer3,
StoreCompA, and StoreCompB, respectively.

Also, the ports (Input, Central, and Output) can be reordered by using
the Rank controls and deleted with the Delete control; both are located
to the right of the Ports list. If there are many connections to remove, it
is much easier to do it from this interface than numerous Q-disconnects

with the mouse.

< lPadung_l ‘ =K
+] Statistics 221
+] Template R 2
+| Visuals &y ?
+| Labels 22
+] Combiner oy ?
+| Processor v ?
+| Output By ?
+| Input By ?
- Ports 2
[Input Ports ‘ v
1: ExitTransfer3 o
2: StoreCompA
3: StoreCompB /‘
t
4
X
‘ |8 |
] Triggers 2

Verity that containers move from the Finishing Area, are packed with components, and move on to the next

process.
» Reset and Run the model and observe the basic flow.
If the model is not behaving as planned, recheck the steps above.

Note, as shown in the figure to the right, every container is packed with
one of each component. This is not what will occur in the real system,
but at least the basic packing operation works. The number of

components per container is addressed in the next step.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

U

F |

i

rYYYYy
4444
(aas s

ter ey

»2 AUTODESK

A trigger on the Combiner, along with a Global Table, is used to update the Components List dynamically.

The recipe for each container type is specified in a Global Table |z5 Model Z]'Packing"

named Packing. As shown in the figure to the right, the table has 1-Red |2Green |3-Blue
Comp A 2 0 1
Comp B 0 4 4

two rows and three columns.

The rows correspond to the rows in the combiner’s
Component List. 1n this case, they refer to Port 2 (CompA) and
Port 3 (CompB).

The columns represent the Type of the container. In this case, the container has Type values 1, 2, or 3.

Therefore, the cells in the table are the Target Quantities for the Combiner. For this example, container
Type 1 receives only two CompA, Type 2 receives only four CompB, and Type 3 receives one CompA and
four CompB.

Note the row and column headers (Row 7, Row 2, Co/ 1, etc.). These are text fields that are useful for annotating
the table - the model does not use them, but they clarify what information is stored in the table.
» Create a Global Table named Packing and edit the cells and headets to correspond to the figure above.

It would be very easy to expand this table to include many more product types (containers) than the three
included in this example model and more types of components. Also, as will be discussed late, the table could
be imported from MS Excel.

An OnEntry trigger on the Combiner is used to instruct the Combiner to use the recipes specified in the
Global Table.
» Using the button, select On Entry.

> Using the button to the right of the On Entry textbox, select the menu option Update Combiner
Component List With Labels.

» In the resulting interface titled Update Combiner Component List, as | [puiigs)
shown in the figure to the right, 3 Sametics 22
<] Template N
e Set the Table value to “Packing” using the dropdown menu and | Visuals &)
. =) Labels P]
select from the list of Global Tables. S Comteaer 5
. h f]_11 ¢ ” . 4| Processor =]
e Retain the default value for Label, “I'jpe”. Each container has the | gupmt —
value of the label Type set when it is created at the Source, which, | :’: =
+| Por ?
in this case, is a random sample from an Empirical | - -
Distribution 4 Undate Combiner Component List A
Table Packng” S
Label Type" -
Thus, when a container enters the Combiner, its Type label value is o o Gt o rpanis -
. .« o, - sngle item label,
checked, and the Combiner’s Component List is updated based on the The iem bl of te fst flowtem to enter s used o fnd
row values in the Global Table Packing in the Type-valued column. Repaennna cangt

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 45 72 AUTODESK

Once the Combiner collects all of the items it needs from all ports, it invokes a processing time that is specified
in the Process Time property in the Processor pane. This is the same as in the Processor object. The process
time represents the combining time, such as packing, assembly, etc. The default time is a constant 70 time
units. The processing time starts once the Target Quantity for all of the items specified in the Components
List has been collected.

The processing time will also vary since a container's type and number of components vary. The type of
container is known based on the label named Type. We could use the “By Case” construct to set the processing
times in the Finishing Machines. However, we take an alternate approach here and use a Global Table. The
advantage of using a Global Table is that changing the process times only requires changing a table value and
not values within objects.

Set up a Global Table to store process times. The table will include finish times and packing times so that
defining the processing times at each Finishing Machine can be changed to use the table data-storage approach.
It is best to set up a Global Table before it is referenced in a model so that its name can just be selected from

a list of tables and not have to type out the name, which may be entered in error.

Not counting the time to move components from storage to the packing table (Combiner), which will be
accounted for in the Robot object, it is estimated that it takes about 0.60, 0.50, and 0.75 minutes to pack
container types 1, 2, and 3, respectively.

Add a Global Table to the model from the Toolbox, as shown
in the table to the right. Again, this contains both the processing | # Model] ProcessTimes

and packing times. FinishTimes |Pading‘l’lmes

» Name the table ProcessTimes and set Rows to 3 and Columns | TYPe 1 15 0.80
to 2. Type 2 20 0.50

» Name the row and column headers as shown in the figure. Type3 | . ki

» Enter the cell values as in the figure.
Note that when selected, the line that divides the rows or columns in the headers turns into an arrow that allows

changing the row and column sizes.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Change the Process Time property on the Combiner to reference the ProcessTimes table.

» In the Processor pane, using the dropdown menu to the right ‘
. , ¥ | Packing_t
of the Process Time's textbox, select the By Global Table P [ok ko
Laoknp option and complete the interf h N £
ookup option and complete the interface as shown to the |70 -
right and described below. +! Visuals ¥ 2
e Tor the Table property, select ProcessTimes from the | tabels 752
. +} Combiner 2
drop-down list of Global Tables. _
Processor & ?
e The default Row property is not changed since it uses the |, ooy - [Jinimate ttems
container‘s label Type for the lookup. Setp Time
0 L 4
e Change the Column property from 1 to 2 so that the b A
: Use Operator(
values in the second column of the table are used. [J:6s Operstor®
. Process Time
Alternatively, enter the header name of the column | ciai o Table (Processt mn S
in quotes, i.c., “PackingTimes.” This way, if the columns |~ <~ =
are rearranged, this value does not need to be changed at . —r ol
‘ nType ,
all of the packing stations. Of course, if the column || coumn | Parkirgtimes’ o
header name is changed, the objects will need to be === :
11 Triggers 2

updated.

> Reset and Run the model to verify that the containers are packed /
with the correct components and that the packing times vary by
container type. Container type 3 is shown in the figure to the right; it
contains one purple Component A (At the bottom of the container)
and four white Component Bs.
One way to observe the contents of the containers after packing
is to temporarily disconnect the Sink NextProcess from the Conveyor
PackToNext. This causes packed containers to back up on the

conveyor so they can be checked.

N
If you haven’t already done so, save the model. Recall that it is good practice to save often.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

16.5 Placing components in containers by robot

The packing station is automated. It uses a robot to move the required mix of components into the containers.
The robot’s tasks are:

e Move each empty container from the incoming conveyor onto the packing table.
e Move the proper components from their storage location to the container.

e Move each packed container to the conveyor that goes to the next process.

This section has two subsections; the first defines the robot’s operations, and the second defines downtime and
repairs of the robot.

16.5.1 Defining the robot’s operations

This section defines the properties of the Robot object to model the proposed packing operation at DPL.

» Create 2 Robot object by dragging its entry in the Task Executers pane of the Library to a location
between the two component storage areas.
» Name the object Roboz_1.

» Set the following property values in the object’s Visuals pane, as [fropertes %
shown in the figure to the right. /& [Robot_t |1 T2 @
e The specified location values should position the Robot between X e T A
) Q‘lZ.SO Mz.so \,|o.oo \,
the two storage areas and close enough to the packing table. & [0 2[00 [0 E
e When setting the size, all that is needed is the x value; the software | * [0.%0 [e[23 [SIEEE E
automatically sets the y and g values based on the x value. More Visuals
2 Labels 22
-] Robot a9
. .) Edit Geometry
DPL has yet to develop the specifications of the packing robot. In FlexSi, , ; ;

] a K Motion Mode | Simple Motion Method v
the Robot object has four motion alternatives (the Motion Mode |_ speed [000 |
property) for the robot's operation. The manufactuting engineers | zrotstonspeed | 1200.00 e

. i
reviewed the options and suggested using the Sizple Motion Method and its | vRotation Speed | 1200.00 deg/mir
default values. The Robot object can model many aspects of robots, but (|2 Taskexecuter =
that detail is not needed for this example. Also, an explanation of the [P L]

. . . Load Time
various modes is beyond the scope of the primer. -

U.uo min
» Therefore, as shown in the figure to the right, in the Robot pane, select | unload Tme
. . . . 0.05 v 2
the Simple Motion Method option for the Motion Mode. s ™
New Tasksequences Only vy &5 S /'

» Asshown in the figure to the right, in the TaskExecuter pane, change | Fire OResourceavaiable at Simiation start

. . . . T | ?
both Load Time and Unload Time to 0.05 minutes (3 seconds); i.c., —— =
+| Dispatcher g9

it is assumed that it takes 3 seconds for the Robot to secure an item || =l ports

to move and the same to release an item once moved. [Central Ports

: ExitTransfer3
: Packing_1

: StoreCompA
: StoreCompB

bW e

» Connect the center ports of the following objects that use the Robot
to Robor_1 using S-Connects. The result should be what is shown in
the Ports pane in the figure to the right

.z>{‘4—3\{;7.0

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

e Exit Transfer on the Conveyor FinishToPack.
e Combiner Packing 1, the packing operation.
¢ Queue SwreCompA, Component A’s storage area.

¢ Queue SwreCompB, Component B’s storage area.

» Check the Use Transport box in the Output pane of the

. . . =) Output & ?
following objects that call the Robot to move items. Use the
) o Send To Port
default transport reference, current.centerObjects[1], which is || /st available -
the object connected to the current or sclected object’s center | 7 e ransport
port. An example is shown in the figure to the right. current.centerObjects[1] v 52
e Exit Transfer on the Conveyor FinishToPack. | Priority Preemption

D Do Not Preempt v

e Combiner Packing 1, the packing operation.

¢ Queue SwreCompA, Component A’s storage area.

* Queue SwreCompB, Component B’s storage area.

16.5.2 Downtime in the Packing Area

The only source of downtime in the Packing Area is the Robot. The downtimes are random failures that the
Finishing Operator addresses. The times between failures and the times to repair are both considered random
variables or probabilistic and thus are based on probability distributions.

Defining this part of the model is the same as the process for defining the failures and repairs on the
Finishing Machines using the MTBF MTTR tool (section 14.5 of the primer). The process for doing so is
repeated here with the estimated values for the robot; however, refer to the previous example in section 14.5
for definitions and explanations.

Since the packing robot has yet to be selected and downtime can significantly affect system performance,
the distributions and parameters represent initial engineering estimates. Therefore, as more information
becomes available on the robots, the parameter values used in the simulation need to be revised.

» In the Toolbox, press the button and again select the MTBF MTTR tool from the drop-down menu.

Modify the Members tab as follows.
» Change the name of the downtime to PackingRobots.

» On the Members tab, use the button and select the Robot Robot 1.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 33 72 AUTODESK

Recall that the Functions tab defines how often downtimes occur and their duration. It also defines what

actions occur in the simulation whenever a downtime occurs.

» Change the values for the following properties, as | #
shown in the figure to the right. % [PackingRobots v| Eenabled
e First Failure Time to an exponentially | Members functons Ereskdouns
distributed random vatiable with 2 mean of 240 FrstFallreTine exponentl(0, 240, getstream(current) mn v & & 2
minutes (4 hours) Down Time uniform(5, 10, getstream(current)) mn v & & /‘
Up Time exponential(0, 240, getstream(current)) min v Z s/‘
e Down Time to a uniformly distributed random
]] . Down Behavior Custom 7
variable with values between 5 and 10 minutes.
Down Function Stop Object and Call Operators v & 3
. . . . Resume Function Do Nothing v &
o Up Time, same as First Failure Time,
exponentially distributed with a mean of 240 OnBreskDown | et Calor (ndvidua) B
minutes (4 hOurS). On Repair lSetColor (individual) ‘j (_2 3
o0& Apply Cancel
» Change the Down Function to Stop object and call | o, comr e S
: >
qberﬂl‘ﬂrf via the property s drop_down menu. AS Down Function Stop Object and Call Operators & &
ShOWﬂ lﬂ the ﬁgure to the rlght, aH defﬂult Values lrl Execute stopobject() and call operators
. Resume Function Dispatcher | downobject.centerObjects[1] - /‘ A=)
the interface are used. < .
op ID 1 v /0
On Break Down Priority @E
. . . Preempt | no preempt v
» Change the Resume Function value to Do Nothingvia | .. ‘ o
epair Number of Operators |1 v / @ E
the drop-down menu. The S#p object option for the Use “waitng for operators’” state hie [y, <
waiting for operators to arrive
Down Function handles the Resume Function loglc. 19 & Note: This function handles the resuming of the object. =]
Choose the option "Do Nothing” as the resume function to
e ensure that the object is not resumed twice.
J E] _S StateTables
& StateTahler

The On Break Down and On Repaiy triggers are used to change the color of the object when it is down.

» TFor the On Break Down trigger, select Set Color [- | -
. .« . m 4 X =
(individual), then change the Color value to ‘ etk e
. . On Repair = - »
Color.red, as shown in the figure to the right. ' SOC | Golor éd V4
0a = —_———

» Similatly, for the On Repair triggert, sclect Set Color
(individual), then set the Color value back to orange using the Color.orange option.

As with the Finishing Machines, the time between failures (downtimes) is based on the object's state and not
on the simulation clock. The robots accrue downtime only when they are performing tasks. However, the tasks
are more extensive than those used in the fixed resource objects, like Processors and Combiners. A Robot is
a Task Executer object. While it does not move like an Operator or Transporter object, i.c., its base does
not move, its arm moves to transport items between objects. Therefore, it accrues downtime in more states.

Those states are identified in the figure below.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION > 72 AUTODESK

The above situation is defined on the Breakdowns tab and shown in the right figure.
» Check the box Apply MTBF to a set of [

states.

PackingRobots v ‘ Enabled

v

» Move states from the States to Choose
From list to States Applied to MTBF

using the >> move button.

Members Functions Breakdowns
Down State breakdown v

. Break down members individually
Multiple states can be selected by
Apply MTBF to a set of states

holding down the shift key when selecting,

States to Choose From States Applied to MTBF
empty ~ processing
collecting travel empty
releasing travel loaded
waiting for operator offset travel empty
waiting for transport offset travel loaded
breakdown loading
scheduled down unloading
conveying 2
travel empty
travel loaded

offset travel empty
offset travel loaded
loading

unloading

down

setuE

v

& Apply oK Cancel

If a robot is down at the end of a simulation, its color remains red. Therefore, on the Robot

» Create an On Reset trigger to change the color back to orange by clicking the button under Triggers
and selecting On Reset.

» Using the button to the right of the On Reset textbox, select Sez Object Color.
» In the Set Object Color interface

e Change Object to current.

e Change Color to Color.orange.

Since a Finishing Operator is used to repair a robot, the two objects need to be able to communicate.
» Connect the Dispatcher FinishOperators to the Robot Robot_1 using a center port connection, i.e., an S-

Connection.

This can also be done in the Ports pane of the Robot, as shown

in the figure to the right. Use the button, then select the 4 I I P N = O

Dispatcher Finish Machines from the menu. |+ @ Souee ® bnstart
+ & Queue ,
+ = Processor =
+ sk Gy ?
~{©) Dispatcher| 2

i' b FinishOperators v

+ 1 % Operator

+ @ Separator “J
+ | = StraightConveyor /

[+J_; EntryTransfer t I
+ ¢ 1:, Robot 4
+ % Combiner R X
e M

Clear

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 35 72 AUTODESK

The Dispatcher is now the fifth object to be connected [« wreemrm properties - o x

to the Robot with center ports, i.e., the Robot now has || 4 [femgubes 7] lenebed
five center ports. Therefore, as shown in the figure tO | yemes Functos seskdowns
the right and explained below, change the port reference FirstFalreTme [axponental, 240, getsteam{carrent]) Y,
to the DlSpatCher. Doan Time uriform(s, 19, getstream{current)) mn v 3 2
Up Time exponental{l), 240, getstream{current)) mn v &8 "
» Go to the Functions tab on the MTBF/MTTR
Properties window for PackingRobots. Select the DownBehaver | Custam 2
Down Function to obtain the interface shown in the DownFunchon [Stop Object nd Call Ozeraters a2
. Execute stoj ™ and cal operators
tigure. Change the port number reference in the RemmePrcin. ([s ek 2l-a
brackets in the FlxSeript command to 5, as Siep 4
. A . . OnBreak O Pricdty [0.00 &3
highlighted by the red oval in the figure to the right. reakben ot [=+ | i
On Reparr Number of Operators | 1 ~ 283
Use “waitng for operators” state whle | - =
waitng for aperators to armive
Note: This funcbon handes the resuming of the cbject.
0 * d\;obe Itsle opticn Do !b?if\g'gmer?esmz ﬁ.n";c'.k:n to e
S TEemoee| ensure that the object Is not resumed twice,

The screenshot in the figure to the right shows
a robot in the breakdown state (colored red),
and the finishing operator is performing the

o T

Also, note the red container that is on the [HEE——
packing table was being packed when the robot
breakdown occurred.

Now that at least the initial modeling of the Packing Area is complete, create a model view of the Packing
Area similar to the one shown above. Also, update the overall model view to include the Packing Area. Recall
that this is done through the View pane of the Properties window when the cursor is clicked anywhere on

the modeling surface but not on an object.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Create the view of the Packing Area, as shown

in the figure to the right
» Orient the model to focus on the Packing
Area, similar to the screenshot to the

right.

» Press the button in the righthand
portion of the Vzews pane.
» Rename the view PackingArea.

Update the overall model view, as shown in the ™ =
tigure to the right e O —
’ > =l

> Select the view Overall — presentation. ’“—J:mw TS

» Zoom out and arrange the model until all o =0 2=
of the objects are visible including the <l o
Packing Area. :

> Press the refresh button *2. in the "3
righthand portion of the Views pane. g) ——

> Repeat the above three steps for the Overall | B
— working model view.

N
If you haven’t already done so, save the model. Recall that it is good practice to save often.

16.6 Check component inventory levels
An important system design issue is how often components in the packing area are replenished and in what

quantity. One means to assess this is through plots of the inventory level over time.

Therefore, create a Dashboard that displays the contents of the component queues (storge areas) over time.
» Create a new dashboard by using the Dashboard button on the Main Menu bar or through the

Toolbox.
» Name the Dashboard Components.

» From the Content pane in the Dashboard Library, sclect WIP By Type and then Line Chart, then click on
the dashboard. Using the chart’s handles, resize the graph to fit the window.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 57 72 AUTODESK

AS ShOWfl in the ﬁgure to the right Properties X

» Name the chart, Contents of Component Storage over Time. [Ac [tents of Component Storage Over Tme | 1.+ 3 @
-] Options ?
Entrance Objects
. " : X t ¥ #
» Using the button in the Entrance Objects section of the Options S::rec/:m . = _
pane, add two objects, both component Queues, StoreCompA and StoreComes
StoreCompB.
Exit Objects
» Repeat the above step for the Exit Objects section of the Options * /S xt 3 LA
StoreCompA
pane. StoreCompB

» On the Settings pane, change Time Access Mode to Show Duration

Type Label CompType
and set the time units to Minutes. Value Type Number v
-] Settings 2

Show Legend
Y Axis Scope Range calculated using all data

Y Axis Range Full Range v

] Time Window

Time Axis Mode Show Duration v || Minutes v
Draw Style Stair Step v
+ Text ?
+| Colors ?
+] Sorting 2
+| Advanced 2

» Reset and Run the model. The contents of the component storages should be similar to the plots shown
in the figure below.

Contents of Component Storage Over Time
K 2

50
40
30
20

10
o T T1— 4 n A]

Based on this short run of about eight hours (480 minutes), it appears that the trend in the number of
Component Bs waiting to be packed in general continues to grow over time. Also, the inventory of Component
As remains quite low, and there is quite a bit of time when the inventory is zero, which may cause the packing
station to have a lot of idle time due to not having Component A.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 58 72 AUTODESK

Therefore, the time between batches and/or the batch size should be adjusted. The simulation model can be
used to decide the best settings. Also, in the model there is no limit on the number of components that can be
stored before packing. The physical space limitations need to be considered.

If you haven’t already done so, save the model. Recall that it is good practice to save often.

¥ Use the Save Model As option in the File menu to make a copy of the existing model so that it can be
=] customized beginning in the next section. Again, you can use any file name, but the next model is referred
d 1)
to as Primer_10 in the primer.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 35 72 AUTODESK

PART V - RESOURCE TRAVEL, EXPERIMENTATION, CONVEYORS, AND LISTS

The primer’s simulation model is further developed by exploring and using several powerful features of FlexSzm
— alternative means to control task executer travel, experimentation and the analysis of scenarios, the use of
conveyors to transport items, and the use of the List tool to implement more complex routing logic.

e Chapter 17 considers two ways to control Task Executer travel: via a path network and the A* Navigator.

e Chapter 18 introduces FlexSim’s Experimenter, which provides a convenient means to consider simulating
multiple scenarios and replicating each scenario. The Experimenter is used to study two aspects of the
system modeled so far — (1) the effect of the size of the buffer of containers prior to Finishing on

performance and (2) the effect of component replenishment plans on performance.

e Chapter 19 introduces the Conveyor objects and adds conveyors in the model to transport containers
between the Finishing and Packing Areas and after packing to the warehouse.

e Chapter 20 adds more complex routing logic in the Finishing Area regarding how containers are selected

for finishing. The logic is implemented using the List tool.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

17 MANAGING OPERATOR TRAVEL

Chapter 17 considers two ways to control Task Executer travel: via a path network and the A*

Navigator.

The base model for the additions described in this chapter is Primer_9 that was saved at the end of
Chapter 16. However, a copy of that file was saved as Primer_10; thus, we begin with that file.

When running the model, you have most likely noticed some “odd” Task Executer (Operator) behavior,
mostly resulting from the use of default behaviors, i.e., not further customizing the object. As pointed out in
this primer, at least for beginners, models are built starting from a very simple representation, with many
assumptions, and then evolving the level of complexity to where it needs to be in order to address the issues
simulation is meant to tackle. With this approach, it is expected that objects or sections of a model will be
updated later in the model-development process.

One of the odd behaviors is that as the Task Executer, Operator FinishOperator_1, moves around in the
model, it has no regard for other objects. By design, when Task Executers start a travel task, they determine
the shortest distance between their current location and the location of the requesting object. In many cases,
this behavior is okay, but it becomes problematic when there are batriers in the Task Executer’s path, which
the object ignores, which is the case in this example. Therefore, the Task Executer’s travel path needs to be
controlled.

Controlling the travel path affects the model’s aesthetics - it certainly
doesn’t help build layperson confidence in a model when people and
equipment walk through machines, conveyors, walls, etc. An example is
shown in the figure to the right, where the Finish Operator waits for its
next task at a Finish Machine, but it appears the operator is inside the

machine.

Controlling travel paths also affects estimated system performance —

avoiding barriers increases travel distance. This additional distance adds
time to travel tasks, which decreases resource utilization because they have to wait longer to be served.

Two options for controlling a Task Executer’s travel path are discussed — using Path Networks and A*
Navigation. Basically, a Path Network defines where a Task Executer can go, and A* Navigation defines

where a Task Executer cannot go.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

17.1 Controlling task executer travel with path networks

Again, by default, when Task Executers (TEs) travel between two objects in a model, they use the straight-

line path and are not inhibited by other objects. To better match reality and to provide more realistic
p Y] Y p

performance measures, TEs can be constrained to defined paths that are formed by what is referred to as a

path network, which is similar to a roadway. A path is defined by connecting a series of nodes, referred to as

Network Nodes (NNs). The nodes are objects located in the Travel Networks section of the Object Library,

just below the Task Executers section.

Only a simple network is constructed here since, in the next section, a different means of controlling TE travel,
the A* Navigator, is used. The Operator will travel to three locations in the model — the Finishing Area, the
Packing Area, and the Break Area, where the operator goes when on break. Therefore, travel is controlled with
three nodes, one at each location. In this simplified approach, the Finish Operator will not travel to each object,
just to a general centralized location in each area. If the Path Network approach were used extensively in this
model, the network would use more Network Nodes and be more complex.

Construct the simple Path Network to be introduced to its basic constructs and how it works.

» Drag three Netwotk Nodes from the
Library to the modeling surface and place

. . .. Network Nodes e aF
them in the locations indicated by the red)) - ﬂ Y 4

arrows in the figure to the right. Network
Nodes are small square black objects.

To get the exact placement of the Network
Nodes, you may uncheck the Snap To Grid box
in the View Settings pane in the Properties

window. Otherwise, nodes will be placed on the
Travel

Paths or Edges

closest grid point. Recall that this interface is

@ «
®

accessed when clicking anywhere on the -

modeling surface where there is no object.

> Since it is good modeling practice to name objects, name the Network Nodes: 71_FinishingArea,
nn_PackingArea, and nn_BreakArea. No other properties need to be modified.

» As shown in the figure above, connect the nodes with A-connections, creating travel path segments, also
called edges. These are straight-line paths, but they will be changed to curved paths to avoid objects

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

The green arrows on the edges denote the
permitted direction of travel. By default, the

edges are bidirectional. As shown in the figure
to the right, right-clicking on an arrow provides

the following options: f{/pmg

. : . e NonPassing
e Passing permits multiple TEs on the same o e
path to pass or move past each other. This ﬁ/ Straght
; o
is the default. de i
// Delete Poth

e NonPassing restricts faster TEs from o Increase Arow Sizs
passing a slower TE on the same path. ./ E————
e No_Connection restricts the direction of L”
travel.

e Straight declares edges, or travel paths between nodes, to be straight lines. This is the default.
e Curved declares edges, or travel paths between nodes, to be curves that can be adjusted.

e Delete Path eliminates an edge between nodes.

e Increase Arrow Size makes the directional arrows larger.

e Decrease Arrow Size makes the directional arrows smaller.

For a network to function, fixed objects must be associated with Network Nodes. This is so that a TE knows
where an object is located on the network. For example, if an Operator is to travel to a Queue in order to pick
up an item, and the TE must stay on the network path, it must know which node to travel to in order to reach
the Queue.

Objects are associated with Network Nodes Network edges (black lines)
by making an A-connection from the node to
the object. When connected, a blue line denotes
the connection, as shown in the figure to the
right.

The figure to the right distinguishes

between the black lines that are network edges
and blue line which associate an object with a
network node.
A single object can be associated with multiple
nodes; e.g., if an object can be accessed from
more than one side or if an object is associated
with multiple networks.

Similarly, a single node can be associated
with multiple objects, e.g., if a TE interacts with
a group of objects from a common point. This

approach is used since it makes the network

quite simple. Recall that the Path Networl Object connections to network nodes (blue lines)

approach is only used for informational

purposes; another approach will replace it in the next section.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» Connect each network node to its associated object(s) as defined below. The second case is shown in the
tigure above.

e From Network Node #7_BreakArea to
o Dispatcher FinishOperators.

e From Network Node 7n_FinishingArea to
o Processor FinishMach_1
o Processor FinishMach_2
o Queue ContainerStorage.

e From Network Node 7n_PackingArea to
o Queue BatchQuene
o Separator UnpackBatch_A
o Separator UnpackBatch_B
o Robot Robot 1.

To use a network, each TE must be associated with the network.
This is accomplished by an A-connection between the TE and
only one of the Network Nodes. This is considered the TE’s
“home” node — where it will be located when the model is Reset.
The resulting connection between the TE and the Network
Node is indicated by a red line, as shown in the figure to the right.

» Connect the Operator FinishOperator_1 to the Network
Node nn_FinishingArea.

When a model is run, an error will result if any of the objects where a TE needs to perform a task is not
associated with a network node.

In this case, the error message shown to the right results because
the Network Node #1_PackingArea has not been connected to
Combiner Pﬂf/él”g_ 7 A traveler's requested destination is not reachable from the network.

Please recheck your connections and run the model again.
Traveler: Robot_1 Destination: Packing_1

» Therefore, make an A-Connection from nn_PackingArea to
the Combiner Packing 1.

OK Cancel

Note this should have been in the list of connections above for Network Node ##_PackingArea, but was not
to demonstrate what happens when a needed connection is not made and an error results.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Since the Robot needs to be on the network so the Operator can repair it, the objects the Robot serves must
also be on the network.

» Therefore, connect nn_PackingArea to.
e Conveyor’s Exit Transfer ExifTransfer3

e Conveyor’s Entry Transfer EntryTransfer?
Note this should have been in the list of connections above for Network Node 7n_PackingArea.

If a Task Executer is not connected to the network, then the TE will not travel on the network, but there
will be no error messages. However, it should be obvious by watching the model that the network paths do
not constrain the TE.

For the Operator to avoid other objects, the network paths between areas need to be curved.

Create a curved network path between the Break Area and the Finishing Area.

> Right-click on one of the green arrows on the edge/path and select ///

Ciurved, as shown in the figure to the right.

Passin
The Curved setting creates two ~handles” on the path or edge, Nonpising
as shown in the figures below. No_Connection
Straight
» Use the “handles” that are now available on the path to form a Curved
curved path that avoids other objects, as shown in the figure below Delete Path
— the one on the left shows the initial position of the handles and S
path, and the second shows the final position. Decrease Afow Size

“Handles” for
= curving the path,

“Handles” for
curving the path

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 166

Repeat the steps for the network path between the Finishing Area and the Packing Area,
» As before, right-click on one of the green arrows on the edge/path and select Curved.

» Use the handles that are now available on the path to form a curved path that avoids other objects, as
shown in the figure below.

rroriere

i |

Visualization of the network can be changed by

» Right-clicking on one of the Network Nodes, then seclecting Network View Mode from the dropdown
menu, and then selecting one of the following options:

o Show Al the default, and what is seen when the networks are created.
e Fdges, which shows only the connecting lines and not the nodes.

e None, which shows only one Network Node, the one selected, and no edges or paths.

The last case is shown in the figure below. However, the model that is available with the primer uses the
ShowAll option so the network is apparent to anyone viewing the model.

L,

Show All
Edges

> % MNone

»2 AUTODESK

A Task Executer (TE) will remain on a network path until it gets to a Network Node associated with the
task it executes. At the node, it can either travel offset or remain at the node to execute the task. By default, it
uses #ravel offset. This activity was discussed eatlier in the introductory chapter on Task Executers. At that
time, the Operator FinishOperator_1 was set not to travel offsets. Therefore, in this case, the Operator
performs all its tasks in the Packing Area at the node. However, if a TE is set to travel offsets, it travels to the
object where the task is performed, no matter how far it is from the node. Recall, whether a TE travels offset
or not is a property that is controlled by a checkbox on the Operator’s Task Executer pane.

L]
=] If you haven’t already done so, save the model. Recall that it is good practice to save often.
=

gn Use the Save Model As option in the File menu to make a copy of the existing model to be further customized

=] in the next section. Again, you can use any file name, but in the primer, the next model is referred to as
J o)
Primer 10A.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

17.2 Controlling task executer travel with A* Navigation

As described eatlier, by default, Task Executers, such as Operators and Transporters, travel in straight lines
between points in a model. While this is efficient, it can be unrealistic — in reality, operators cannot go through
machines, conveyors, etc. The straight-line path not only doesn’t look right, but it can affect estimated system
performance — it takes longer to follow an object-avoidance route compared to the straight-line distance

between objects.

In the previous section, the travel paths of the Finishing Operator, are controlled through a network of
connected Network Nodes. Each node is considered an object and is placed on the modeling surface at key
locations to establish the paths, which can have either straight or curved segments. In essence, this approach
tells the Task Executer where to go. The alternative approach considered here, referred to as A* or AStar,
tells the Task Executer where 707 to go; thus, the TE decides the path that avoids the specified obstacles.

A* (pronounced A-star) is a popular search algorithm commonly used in computer science and mathematics.
It uses heuristics to find the shortest path between points, considering barriers or no-travel zones. As with all
other topics in the primer, only the basics are introduced here, and the default settings are mostly used.

Utlizing the A* algorithm in FlexSim is quite easy. The objects associated with the A* algorithm are in the
section of the Object Library named A* Nawvigation, just below the Visual section.

17.2.1 The basics of A* using a simple study model

Before implementing A* in the current primer model, use a simple study model to understand the basics.

» Create a new model using all default settings.

It is good modeling practice to try new concepts outside of the main model being constructed. These
simple models, often referred to as szudy models, are useful in learning new concepts or understanding how

FlexSim features behave. They focus on a particular problem or a portion of complex logic.

As shown in the figure below, create a simple study model of an operator transporting items between two
locations, from the Source to the Sink. A Queue is included that is not connected to any other objects — it is
used to represent a storage area that the operator should avoid. For all objects, use the default property values.

Soulbi Sink1

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» Drag out a Source, Sink, Operator, and Queue from the Library.

» A-connect the Source to the Sink.

> Reset the view so that it is in planar view.

As a general note, anytime you want to reset the
model view, right-click anywhere on the
modeling surface, but not on an object. Then, +
select View, then Reser 177ew, as shown in the -

figure to the right. The resulting view is of the x-
y plane centered at the origin.

» Place the Queue on the straight-line path between the Source and the Sink.
» Center-connect the Operator to the Source.
» On the Output pane of the Source, check the property Use Transport.

» Save the model as A-StarStudy.
» Reset and Run the model. As expected, the Operator’s path should be through the Queue, as shown in

an earlier figure.

Now use A* Navigation to control operator travel.
» Delete the Queue object; we'll replace it with a “barrier.” A Batrier, like a Divider, is an A* Navigation
tool that creates obstacles for Task Executers to travel around.

> Drag out a Barrier object from the A* Navigation pane.

» Resize the Barrier by making x = 7, and locate it between
the Source and Sink, as shown in the figure to the right.

When the model is Reset, a blue box encompasses the model. It
is automatically created and is called the Gréid Bounds.

The box can be hidden by unchecking SZow Bounds on the
Visual tab of the A¥Navigator tool.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

When an A* Navigation object is added to a model, it is automatically added to the A* Navigator in the
Toolbox.

» Double-click the A¥*Navigator tool in the Toolbox and note that it has several tabbed interfaces, such as
Setup, Behavior, and Visual.

» In the Members section of the Setup tab, select

#~ A* Navigator Properties - O X
Setup Behavior Visual Conditional Rules Triggers Labels
Traveler Members, then use the button to add
objects. In this case, select Operator! in the swondoph [2

Operators section, as shown in the figure to the B smooth Rotations

right. Objects selected here will have the A* it

Paths

algorithm apphed to them. [[Jcache Paths

» Also in the Members section is FR Members, where
FR is an abbreviation for Fixed Resource. The

interface is just below the Traveler Members, again on

Members

the Setup tab. No FR Members need to be added in [AlMembers | [#

Traveler Members

this simple example. FR Members & | [| [T
Since the Batrier is an A* Navigation object, . |

. . T vestron
it is automatically assumed to be a member of the N ”'?I‘: oo
objects the Traveler Menbers must avoid. + @ Source

+ , Sink

[X Operator

B) Operator1
© = 84| « oK Cancel

Clear

> Reset and Run the model. The Operator should identify and follow the shortest path between the Source
and Sink that avoids the Barrier.
As noted above, a blue box provides an outline of the objects that are considered by A*. The box can
be hidden by unchecking Skow Bounds on the Visual tab of the A*Navigator tool.

The size and location of the blue box may need to be adjusted since the operator will not travel beyond its
boundaries. It can be repositioned by selecting anywhere on the blue border and dragging the box to the desired
location. It can be resized by selecting and dragging one of the red arrows that appear on the border when the
object is selected.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 70 72 AUTODESK

TEs can avoid basic Fixed Resource objects as well. An example is illustrated here. A Processor object is
placed next to the Barrier, so the Operator needs to avoid both objects.

» Drag out a Processor object and place it adjacent to the
Barrier, as shown in the figure to the right.

» Double-click the A¥*Navigator tool in the Toolbox to
open its interface. In the Members section of the Setup tab,

select FR Members, and use the button to select
Processor! in the Processor section.

» Reset and Run the model and observe the behavior. The
Operator should identify and follow a path between the

Source and Sink that avoids the Barrier and Processot.

A heat map can be used to see the path the operator travels and the frequency at which the path is used.
» In the A* Navigation tool, check the Show Heat Map box on the Visual tab.
» Also, just below this propetty, check the Transparent Base Color box.

» Reset and Run the model and obsetve the
behavior. The Operator should identify and
follow a path between the Source and Sink
that avoids the Barrier and Processor, as
shown in the figure to the right.

The “warmer” zone on the heat map - yellow, as

opposed to green - indicates a higher frequency
of travel on that path.

Experiment with the placement of objects and
note the effects on the operator’s travel path.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

17.2.2 Implementing the A* algorithm in the primer model

Now that the basics of using the A* Navigation approach have been introduced through a simple study model,

it is incorporated into the primer model.

The base model for the additions described in this section of the chapter is Primer_10 that was saved
at the end of Section 17.1. However, a copy of that file was saved as Primer_10A; thus, we begin with
that file.

The A* approach for controlling task executer travel is considered to be better for representing the system
modeled in the primer example. However, this is not always true; sometimes, using a Path Network is better.
Both approaches are introduced in the primer so the modeler can decide which is best based on the system
they are modeling.

As to why the A* approach is better in this situation, consider the focus of the primer example. In this case, a
simple system of objects is created so they can be scaled up to design and evaluate alternatives for a new
production system in one of DPL’s facilities. With the A* approach, the path network does not have to be
updated each time a different design alternative or layout is considered.

Since A* Navigation will replace the Path Network approach, all of the objects and connections used in the
network approach will be removed. Keeping them in the model just adds unneeded complexity. Removal is

fairly easy and does not require reversing all of the steps that were followed when it was created.

Remove the Path Network elements

> Assuming the path network was hidden except for one Network Node 7n_BreakArea as described
eatlier, right-click on that node and select Network Node 1 7ew, then Show A/l This displays all aspects of
the network.

» Select and delete each Network Node — nn_BreakArea, nn_FinishArea, and nn_PakingArea — by selecting
the node and then pressing the keyboard’s delete key. This not only removes the node but also all
connections to the objects that used the node.

Recall the Operator travels to the location of the Dispatcher for breaks. Set up an area the Finish Operator
needs to avoid to get to the Break Area.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION / 72 AUTODESK

» Drag out a Barrier object from the Library; name,
size, and locate it as shown in the figure to the right.

Configure the A* Navigation properties.

=] ‘ Barrier1 \
|+] Template
-] Barrier

T

9"’/

X ¥ z
C_]\-M,so [2[0.00 [2[0.00

v | 6.00 2| 15.00 =

Condition
None

> Open the A* Navigator tool (at the bottom of the Toolbox) by double-clicking it.

» On the Setup tab and in its Members section, use the button to add objects to the Traveler
Members list. In this case, select the FinishOperator_1 in the Operators section. Objects selected here have

the A* algorithm applied to them.

In a similar manner, add the FR Members.

Consider what objects the Operator needs to avoid — the
conveyors (straight), Finishing Machines (Processors),
packing table, stores (Queues), and component
unbatching (Separators).

As shown in the figure to the right, the interface is just
below the Traveler Members, again on the Setup tab.
> Select the objects shown in the figure to the right.
By selecting an object category, e.g., Queues, all
objects in that category are selected; in this case, the
objects ContainerStorage, StoreCompA, StoreCompB, and
BatchQuene are added to the FR Members list.
Multiple object categories can be selected at a
time by holding down the Shift key when selecting

categories.

The other object types in the model are not selected
since they are not considered to be barriers to the
Operator’s travel.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

-~

| Setup Behavior Visual

Surround Depth

Smooth Rotations

Conditional Rules ~ Triggers Labels

Snap Dividers to Grid

Paths
[cache Paths
Path ed

Members
All Members || FinishToPack
Traveler Members PackToNext
FR Members 5| | FinishMach_1
X FinishMach_2
Packing_1
Properties ContainerStorage
StoreCompA
StoreCompB
BatchQueue
UnpackBatch_A
UnpackBatch_B
(2] 1:3 YRR Apply Cancel

»2 AUTODESK

Besides the basic FlexSzz modeling objects that are used in the model, the only other thing the Operator
should avoid is the facility’s walls. For the Operator to avoid the walls, the Divider object in the A*
Navigation section of the Object Library or the Walls object in the Vzsuals section can be used. Since the
Divider is an A* Navigation object, it is automatically considered a member; if any Walls objects are used,
they need to be added to the FR Members list in the A* Navigation tool.

So that the Operator does not travel between the two Finishing Machines, add a Divider to restrict travel.

» Sclect the Divider object from the Object X [X
o« | FM Dacer |-ta @
+| Template 2
| Divader { Path = ?

Library and click on one end of the vertical wall
to the right of the finishing machines. (This wall

divides the finishing area from the packing atea). o o
Then click on the other end of the wall on the

layout. Press the Esc key to stop drawing the

divider. This results in a line segment with a circle
at each end, as shown in the figure to the right.

» Name the object FM_Divider.

» Adjust the shape as necessary by dragging a circle
end point or the line segment. The wall can be s 5

located more precisely by double-clicking the

Divider object and modifying the table values, as

shown in the figure to the right. Each row in the

table is the x-y-z coordinate of one of the circles

on the Divider.

Note that Barriers and Dividers have no height; the z-value is only for the location of the bartier/divider in
the z-direction. To represent a wall in a model, use the Walls object in the Vzsual section of the Object
Library.

Check the following conditions.
» The Robot object Roboz_1 should not be in the Members list for the A* Navigator tool.

» For the Robot,

e The Navigator property should be set to Noze in its Travel pane. If not, use the - button to delete
the specified navigator. While the Robot is a Task Executer, it is not a mobile resource.

e The picklist below the Nawvigator property should be set to Travel offsets for load/ unlvad tasks. If not,
use the dropdown menu to set the desired value.

» On the Visual tab of the A* Navigator tool,
e Check the Show Heat Map box.
e Check the Transparent Base Color Heat Map box.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION /4 72 AUTODESK

For clarity, any or all of the boxes on the Visual tab of the A* Navigator tool can be unchecked. This does
not affect the underlying logic, but makes the model a bit cleaner visually. However, you may want to leave
Show Barriers and Show Heat Map checked.

» Reset and Run the model. Verify that the Operator avoids all of the fixed resources, barriers, and
dividers, as shown in the figure below.

% If you haven’t already done so, save the model. Recall that it is good practice to save often.

Use the Save Model As option in the File menu to make a copy of the existing model to be further customized
% in the next section. Again, you can use any file name, but in the primer, the next model is referred to as Primer_11.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION #2 AUTODESK

18 EXPERIMENTATION IN FLEXSIM

Chapter 18 introduces FlexSim’s Experimenter, which provides a convenient means to consider
simulating multiple scenarios and replicating each scenario. The Experimenter is used to study two
aspects of the system modeled so far — (1) the effect of the size of the buffer of containers prior to

Finishing on performance and (2) the effect of component replenishment plans on performance.

Simulation models are created for analyses. Simulations approximate the behaviors of a system operating under
a set of conditions. The behaviors are expressed in terms of measures of system performance, which are
considered the output from a simulation. The analyses typically use the measures to find the “best” set of
conditions under which to operate or understand the sensitivity of changes in operating conditions on

performance.

In the models so far, output has been limited to a single run and primarily to basic object statistics displayed on
the object and in Dashboards. While this is good for testing a model’s behavior, it is insufficient for analysis.

Since models involve randomness, results vary from run to run, just as in the real world, performance varies
over time. Therefore, decisions should not be made using a single simulation run based on a set of conditions
operating over a set time period. Instead, each simulation scenario is replicated a specified number of times.
The number of replications must be user-specified, but since deciding the number involves probability and
statistics, discussion of how to choose the number of replications is outside the scope of the primer. In general,
the more replications, the better, but it depends on the amount of variability in the system. Also, the number
of replications determines how long it takes to run an experiment, and there are diminishing returns. Therefore,
in many cases, between ten and thirty replications is a reasonable number.

FlexSim, through its Experimenter tool, provides a convenient means for developing information to support
analyses by automating the running of a model with different inputs and collecting the results, i.e., running

multiple simulations under a set of conditions and multiple simulations under different sets of conditions.

In FlexSim, using the Experimenter means running a Job, where a Job is defined by specifying the following.

e DPerformance Measures, often called the output from a simulation, are the key indicators of how a system
performs, and their values are used to decide which alternative is best.

e Decision Variables and their values, often called the inputs to a simulation, are the properties of a system
that can be changed to improve performance. In statistical terms, decision variables are analogous to
factors and their values are levels of the factor.

e Scenarios are the alternatives being considered; each Scenario is specified as a combination of decision
variables and their values. Scenarios can be defined by several means; these means are a part of the
Analysis Strategy, which is defined below.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 7 72 AUTODESK

e Experiment Settings are the values for run length (Stop Téme), number of replications per scenatio, and
length of the warm-up period (Warmup Time) if applicable.

e Analysis Strategy — FlexSim provides the following types of Jobs representing the Analysis Strategies.
o Experiment — a specified set of scenarios and performance measures. Simulation uses the values of the
input variables to provide measures of system performance for each scenario.

The scenarios may be defined as a specific set of operational alternatives or using a Design of
Experiments (DoE) approach. DoE is a branch of applied statistics that provides efficient means to
study the effect of multiple input variables on a system’s response. It provides a structured and
systematic means for analysis and avoids using approaches such as trial and error or changing one
variable at a time, which overlooks the combined effect of multiple variables. Discussion of DoE is
beyond the scope of this primer.

o Optimization provides a methodology for effectively searching the design space for the “optimal” or
“best” scenario, i.e., the best combination of decision-variable values. The search is carried out based
on one or more objectives, which are based on the system’s performance measures.

Unlike the Experiment job, the user does not specify the scenarios, just the variables to be
considered, their data type, and their operational range of values to be considered. For example, if
one of the decision variables is the number of operators to use, then it would be specified that this
factor is integer-valued, and the system could use one to five operators.

Scenarios are defined by the optimizer — as part of its algorithm scenarios are defined on the past
search history and the objectives, which are based on performance measures.

FlexSim does not include an optimization tool. However, it interfaces seamlessly with a
prominent commercial optimizer, OptQuest, and provides links to C++ and Python so the two
software can communicate and perform an optimization.

o Range-Based. Similar to the Optimization strategy in that specific scenarios are not specified — only the
decision variables to be considered and their minimum value, maximum value, and step size are
specified. For example, if processing time can be set to a value between 10 and 20 with a step size of
2.5, then this option would automatically consider the following five values for processing time: 10.0,
12.5, 15.0, 17.5, and 20.0. Thus, this decision variable or factor would be considered at five levels.

Be aware that the number of scenarios can grow quickly. If there were three decision variables
being considered, each at five levels, then there would be 125 scenarios (5*5%5=125). If each scenario
is replicated ten times, then there would be 1,250 simulations performed.

The Experimenter collects results for the simulations and stores them in an external file and not in the model
file; the file is referred to as the Results Database File. This has several advantages, such as it does not rerun
the experiments if they have already been run and are in the database file, additional replications of any scenario
are appended to the file, and it reduces memory requirements. This is mentioned for awareness and possible

future use; the primer does not work with the database file.

As has been mentioned before, analyzing simulation models requires a foundation in probability and statistics
and includes a variety of methodologies. It is beyond the scope of this primer to discuss simulation analysis - it
only introduces the means in FlexSin for designing and carrying out experiments and obtaining output from a

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 77 72 AUTODESK

simulation model. For more information on simulation analysis, see for example, Chapters 10 and 11 in the
Applied Simulation Modeling and Analysis Using FlexcSim textbook.

Two examples of experimenting with the current simulation model are discussed in the subsequent sections.

However, before proceeding with the Experimenter, you may have noticed when running the model that
Component A’s buffer seems to be empty a lot, and Component B’s buffer seems to stay rather full. The
modeler checked with DPL’s production engineers and discovered that they provided the wrong values for

their initial batch size estimates. The values were reversed. Therefore, update the values in the Parameter
Table.

> In the Parameters Table Cﬂ/ﬂpOﬂé’ﬂdeﬂ'bSl.z@ set 4% Model)\ PerformanceMeasures S5 GeneralParameters =5 Componentbatchaize
the Values for Component A and Component B to 5 and 3, | perameters [2 2] 53] [X][#

respectively, as shown in the figure to the right. i Yol e
> CompBatSz_A

5

The base model for the additions described in this chapter is Primer_10A that was saved at the end of
Chapter 17. However, a copy of that file was saved as Primer_11; thus, we begin with that file.

18.1 Effect of buffer size on performance

The first Experimenter example is used to assess the effect on system performance of the size of the
containers’ buffer (the Queue object named ContainersStorage) that is located prior to the Finishing Area. The
effect is measured by the number of containers that are redirected to another location because there is no space
in the buffer for an arriving container.

Create a measure to assess the effect of various alternatives on system performance. The Performance
Measure Table tool in the Toolbox provides a means for defining these measures. Each model contains a
blank table named Performance Measures. 1ike the Model Parameters Table, multiple Performance Measures

Tables can be created and used. However, we’ll just use the default.

> Before setting up the table, rename the Sink S7zk1 to RedirectedContainers. Recall that Sinkl receives any
containers for which there is no space in the Queue ContainerStorage when the containers arrive.

» Double-click the Performance Measures table in the Toolbox to open it. The default table name is okay.

» Change the name of the first measure from PerformanceMeasurel to RedirectedContainers.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 78 72 AUTODESK

» Use the dropdown menu to set its value.
For Reference, use the sampler tool (eyedropper) to select the
Sink Redirected Containers in the 3D model.
When the object is selected, select Stzatistics, then Input, as
shown in the figure to the right. This will measure the number

of items entering this Sink.

RedirectedContainers l

Statishics > Content
State Percentage ? Input

Qutput
e

The selection automatically populates the Value | rerformance veasures : Ea| %
dropdown menu for performance measure |[Name Value Display Units___[Description

. . . RedirectedContainers (] I3
RedirectedContainers, as shown in the figure to the I
. h Reference [_"Redu'ectedContamers ‘/‘
1g t. Value Statistic by individual object v & &

Again, this measure provides a total count of 4' e | = ’7
the number of containers that are redirected

when they arrive.

To change the Queue’s buffer size during an experiment, set this variable up as a Model Parameter.

» Since the existing Model Parameter Tables have been set up for specific types of model parameters,
create a new table for general parameters. Through the Toolbox, add a Model Parameters Table named
GeneralParameters. To create the table, in the Toolbox, select Mode! Parameter Table under the Statistics section.

#% Model A PerformanceMeasures m

» Rename Parameter! as BufferSize. Parameters [1 |12 [3a] [X
Name Value Display Units |Description
. . BufferSize 50| v
> Set the Value as shown in the figure to the right,

Type Integer v
where Type is Integer, Lower Bound is 1, Upper Bound is Lower Bound |1 -
50. Set the initial value to 50. UpperBound |50 -

Reference lHone J/

On Set l ‘L\F @8

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Change the Queue’s maximum content to reference the Model Parameters Table and not use the current
tixed value of 50. However, the input for the Max Content property value on the Queue pane can only be
numeric. Therefore, the reference to the Parameter Table will be done with an OnReset trigger and a small
amount of FlexScript code.

On the Queue ContainerStorage,

» Add an On Reset trigget.

> USiﬂg the button to the fight of the On Reset | propertes X
1 .- & | C S |
text box, select the last item, Code Snippet h o 1120
+) Statistics 22
> As shown in the figure to the right, type in the | s empiste = ?
. +] Visuals ol |
following. 21 Labels 220
<l Ouene s 9
current.setProperty(“MaxContent”, Model.parameters.BufferSize); ‘; 4
TGToupS ?
+| Ports 7
. . - Tri 28
Note as you type, the interface provides the syntax —— !
&
and keyWOrdS. On Reset -
‘ 4 17Code Snippet - set max content \ X e 2
Th d h d current.setProperty("MaxContent”, Model.parameters.BufferSize);
is command sets the property name
MaxContent on the current object (in this case,
Queue ContainersArrive) to the value stored in the
Model Parameter named BufferSize. -
7
e

Test the changes so far.

» In the Model Parameters Table General Parameters, set the BufferSige parameter to a smaller value, say 1.

> Reset and Run the model.

» Check the value of RedirectedContainers in the R = — = ——
Performance Measures Table. In the case shown to |eerformancevessres [1 = B3] 5 (4118

the right, only eight containers were redirected when the ~ [reme [Vaue [Display Units__ [Desarption

RedirectedContainers 8

buffer size was limited to one containet.

L - .
If you haven’t already done so, save the model. Recall that it is good practice to save often.
Jd 8

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» Access the Experimenter by selecting it from the Statistics dropdown on the Main Menu or the Statistics
section in the Toolbox. This opens the Simulation Experiment Control window, which, as shown below,

contains multiple tabs and properties. For now, only the minimal features are considered.

-~

Il Results Database File [C:\Users\greenwa\OneDrive - Autodesk\Documents\Primer 2024U2-1\Primer_11.sc] Use Default Path Delete Results File View Results (7]

Jobs Run Filters Advanced

e w53 X ||| § | Name ‘ Experiment1 ‘
Warmup Time [0.00 [s:00:00aM [2][8/24/2024 @]
Stop Time [4800.00 [400:00pM [2][8/27/2024 B~ |
Replications per Scenario 20 |
Parameters Scenarios 6 = Xt J Set model to selected scenario
#-[_FinishTimes BufferSize ‘
+) DComponenﬁ:requenC‘/ Scenario 1 1
+ ComporlwentBatdeme Scenario 2 10
-I-¥|GeneralParameters
S o3 20
MBuffersize o
Scenario 4 30
Scenario 5 40
Scenario 6 50

The first tab, Jobs, is for specifying the Analysis Strategy, Experiment Settings, Decision Variables Scenarios,
and Performance Measures, which were defined earlier.

The type of Analysis Strategy is an Experiment. Recall that the other types are Optimization and Range-Based. By
default, the Experimenter starts with an Experiment named Experiment]. The strategy can be changed, or

new strategies can be added by using the button on the left side of the interface. In this example, the
experiment considers a range of buffer sizes, which are the maximum content of the Queue ContainerStorage.

For Experiment Settings
» Change the Name (call this experiment BufferSize).

Leave the default value of 0.00 for Warmup Time.
Change Stop Time to 4500 minutes.
Set Replications per Scenario to 20.

VYV V V

Decision Variables are selected from Parameters Tables.
» In the Parameters section of the interface, select Buffer Sige, the only factor in Model Parameters
Table GeneralParameters.

Scenarios are the alternatives being considered.
» In the Scenarios section of the interface, use the spinner to create six scenatios.
» As shown in the figure above, enter the six alternatives (1, 10, 20, 30, 40, and 50) in the BujferSize column.

All Performance Measures defined in the model are evaluated in each experiment. Therefore, action is only
necessary if a desired performance measure needs to be defined. In this case, the measure RediurectedContainers

has already been defined and will be evaluated for all replications of all scenarios.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

» On the Run tab, as shown in the figures below, click the Run button (green triangle) just to the right of
the Job dropdown menu (Experiment or BufferSige should be selected).

P Oribene 1 T Whevigrrmm Onerin - Ahih Doty Toamy 05 (e (2o] he Detndi ot s it T ot O el Dot T | € L g v Cra v - ki Evasowe 2 #s AL we_Ln] 7 M4 SolecPolt [anisfepsy o yestents W
- Taowewt Piwr = Wiee P — Pro v o
Exp-nm-nll Status Experimentl Status

= = e " - Boponst Wistmast Wesang Biertrg Bompss
72 = =81 iy) EIEI T I R R S e s Y 0 BN R
——— L] l_nl:[_MIlIh N e =)] T) O B =T

o o o s o 2y | e s 2 _.'A JF"?]—TZ'T'_EL"]C‘ATJ e [y [gy RIE] fRape) e e Emm) BT oy
P [e [[e [[T e [[[P] (X TN RO [[e e TR) AT
- [T [[[[(e[Saa e oM G EIN I (TR b) ey
...... o o s l[:IIII_III E35 II]III S [PEE] RN [N (T e T)) [
o | o < o | e) BT T T T e [s []
— I_l_m_!l_.l_.ll_L_IL:'—'_lIHII = EE RS FR R P FEL I B T
33 TS s | o | o T T [T TR B T ey e
waya T T C) A e e) S s e] jos s=line e oo oot mefd Sl sifcs S fom Sl wifse_saf U 3zl
e e e - o o e e e v - [amnee_swf e gt BEaeT FEEES) BT (e 5 pree Een e

When the run begins, as shown in the figure to the left above, a gray display box is created for each replication
of each scenario. The boxes change color as that simulation is run. The experiment is complete when all of the
boxes are green, as shown in the figure to the right above

» To view the result, press the View Results button in the upper right portion of the interface.

As shown in the figure to the left below, the default view is a Replications Plot. 1t is a Box-and-Whiskers Plot,
where the ends of the box denote the 25! and 75 percentiles, the horizontal bar in the box indicates the
median (50% percentile), and the end bars are the extremes, i.e., the minimum and maximum number of
redirected containers.

Other views of the results of the experiment are available through the dropdown menu to the right of the
name of the performance measure. The figure on the right below, referred to as Raw Data, shows the value for
each replication and scenario.

~ ~

b JYR— o
MrAeTarTs e 10t Eabod Dt Gt Tk Zomi | Sorees e s
Poctormarss Masazen 3 - PR LAY RSy
E RN Sen teetoet T b (S e e e

RefumctndContainess Ao eatad mierens Ron ate

Sar Teed Al Bemae aspt Jaeed Fe07 Rl [Eeps (dep B A il Am O

Note that in this case, items are diverted to the Sink RedirectedContainers only in the first scenario, where the
buffer size is 1. In this scenario, items were diverted due to a full storage area in all 20 replications. No containers
were diverted in any of the other scenarios. This indicates not much storage space is needed for containers
entering the system, at least under the current conditions. This could change as other parts of the model are
developed and as system parameters change.

» For now, to be consetvative, set BufferSige parameter to 5 in the Parameters Table Genera/Parameters.

»2 AUTODESK

— N .. .
If you haven’t already done so, save the model. Recall that it is good practice to save often.

18.2 Effect of component replenishment plan on performance

The second Experimenter example is used to assess the effect on system performance of the component

replenishment properties.

Continue with the same model file as in the previous section; i.e., continue with the file named
Primer_11.

The replenishment of components that are packed into containers is driven by two decision variables: the
frequency of replenishment deliveries and the quantity replenished in each delivery (batch size). In this case,
only batch size is considered. Three batch sizes are considered for each component. Therefore, there are nine

combinations of conditions or scenarios (32 = 9). The experimental design Batch Size
is shown in the table to the right. The design considers all combinations | Secenario Comp A CompB
of Component A at three levels (batch size = 3, 4, 5) and Component B l i' i
at three levels (batch size = 2, 3, 4). In statistics, this is referred to as a '; 5 ;
full-factorial experimental design. 4 3 3

5 B 3
Component batch sizes are already stored in a Model Parameters Table 6 5 3
so that they are readily available. ; j :

9 5 4

However, no performance measures have been specified to evaluate the
batch size alternatives. In this example, we’ll consider the throughput of the packing area and the maximum

inventory in each component’s storage area.

Therefore, add these performance measures in the Performance Measures Table in a manner similar to the

prOCCSS described iﬁ the previous 5 Model ;Tm _"‘—E GeneralParameters :—_: ComponentBatchSize
section and as shown in the figure to the | Performance Measures 3l X [x][®
I'i Tht Name Value Display Units lDescripﬁon
é ’ RedirectedContainers 0
» Add three measures and name | |PadingThroughput 0152
. . Inventory_CompA
them as in the figure to the right. Tventory,_Compd Reference | /Packing_1 |~
Value Statistic by individual object vy &5 S

Statistic Output 7 ’7
> Define the measure

PackingThronghput as shown in the

tigure to the right, i.e., select the Value dropdown and use the sampler tool to select the Combiner object
Packing 1 in the 3D model. Then select Statistic by individual object, and for the Statistic, select Output.
This measures the output of the packing station or its throughput.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

» Similarly, define the measure Inventory_CompA - select the Value dropdown and use the sampler tool to
select the Queue object StoreCompA in the 3D model. Then select Statistic by individnal object, and for the
Statistic, select Maxcimum Content.

This measures the maximum number of component As that were stored in that area during the

simulation.

» Similarly, define the measure Inventory_CompB - select the Value dropdown and use the sampler tool to
select the Queue object StoreCompB in the 3D model. Then select Statistic by individual object, and for the

Statistic, select Maxcimum Content.
This measures the maximum number of component Bs that were stored in that area during the

simulation.

Now that the parameters and performance measures that support this analysis have been defined, open the
Experimenter, cither through Statistics on the Main Menu or the Toolbox.

Define the experiment as shown in the following figure and discussion below.

-~
Results Database File l C:\Users\greenwa\OneDrive - Autodesk\Documents\Primer 2024U2-1\Primer_1 l.sql‘ Use Default Path Delete Results File View Results (7]

Jobs Run Filters Advanced

o v (X1t $ Name ‘Experlmentz ‘
E%g_ Warmup Time [0.00 |[[8:00:00am 12| 8/24/2024 B
perimer
Stop Time [4800.00 |[400:00pM [5]][8/27/2024 B
Replications per Scenario [20 l
Parameters Scenarios 9 o T3 e el to selected sce
#-[_JFinishTimes CompBatSz_A CompBatSz_B
+) DComponEnErequency 3-2
+-[“]ComponentBatchSize 42

4[] GeneralParameters =

33
43
53
34
4
54

[N ST, R NIRRT R N
S S S N AR RN AR U N b4

» Using the button on the Jobs tab, add an Experiment type of Job.

Experiment Settings
» Change the Name from Experiment2 to ComponentBatchSize.

» As in the previous expetiment, leave the default value of 0.00 for Warmup Time, change Stop Time to
4800 minutes, and set Replications per Scenario to 20.

Decision Variables are selected from Parameters Tables.
> In the Parameters section of the interface, select both CompBarSz_A and CompBarSz_B from the
ComponentBatchSizge table.
Note that as each of the above parameters is selected, a column is added to the Scenarios section of

the interface.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

Scenarios are the alternatives being considered.
» Use the spinner to create nine scenatios in the Scenarios section of the interface.
» Rename the scenarios — change their names from Scenariol, Scenario2, etc., to those shown in the figure
above.
When the results of the experiment are displayed it will be easier to identify in operational terms
which scenario is best. For example, if Scenario 1 is best, it will be identified as 3-2, which is the batch size
for Component A and B, respectively.

> As shown in the figure above, enter the nine alternatives in the two columns.

Based on the analysis from the previous experiment, be sure the incoming containers’ buffer size is set to 5

(value for the parameter BufferSize in the GeneralParameters table).
» To run the expetiment, click the Ruz button (green triangle) on the Run tab of the Experimenter.

> When all of the cells ate green, view the results by pressing the View Results button in the upper right

portion of the interface.

Based on the Box-and-Whiskers plots in

the figure to the right, it appears | e
PackingThroughput

Scenario 4-3 may be best. This would set

the batch sizes of Components A and B w e o s s e 3
ively i T T

to 4 z_md 3, r.espectlvely This | . T =

combination has a high throughput for , N = 2

the Packing Area and a low, but not the . % ‘ % % \

lowest, maximum level of inventory in ‘ v “

the component storage areas. Of course,

this is only based on the current | s O

Bl & £ UL N I S T L S LTI T e)

conditions; the analysis would need to | = i ez~
be performed again once the model is Inventory_CompA

scaled up to the forecasted production o oL
rates. However, everything is now setup | , - %

to run the experiments. . . % : % =

N Somwoe L aw fapoct v
Dty Nenn st Sudviaes Dt Dwieder Temar Damb Taran Coombe T b Thele M
Tnarrry Cwwtt Tre wre Poe (RN = T e

Inventory_CompB

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

» Based on the current analysis, update the Values in the Parameters Table ComponentBatchSize to 4 and 3

for Components A and B, respectively.

Revisiting the other performance [~
measure, RedirectedContainers, as shown

in the figure to the right, indicates that

Scenario 4-3 results in minimal
redirected containers when they arrive

at the Finishing Area.

asres Dagrboard Statstics Statehics Tobles Rexit Tables Corcole Cutput StateF

Rephcaticns Pt

RedirectedContainers

bz

Ganarate Repart

[Aoata [A 8w por [mean 98

17}

to as Primer_12.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

If you haven’t already done so, save the model. Recall that it is good practice to save often.

Use the Save Model As option in the File menu to make a copy of the existing model to be further
customized in the next section. Again, you can use any file name, but in the primer, the next model is referred

»2 AUTODESK

19 MATERIAL MOVEMENT VIA CONVEYORS

Chapter 19 introduces the Conveyor objects and adds conveyors in the primer model to transport

containers between the Finishing and Packing Areas and after packing to the warehouse.

A common way to move items through a system is via conveyors. Conveyor systems are often complex, but
FlexSim has extensive capabilities to model such systems. Of course, for this introductory primer, only the
basics are considered. Objects associated with conveyors are in a section in the Object Library just below
Travel Networks.

Modeling conveyor systems in FlexS7m is discussed in the following two sections. The first section introduces

the main conveyor objects, and the second section describes how to model conveyors in the primer example.

19.1 General description of conveyor objects

The primer example will use only a subset of the available conveyor-related objects:

= | Straight Conveyor @ Decision Point

Curved Conveyor . I I Photo Eye

Therefore, only these are discussed in this section.

Conveyors are much like Fixed Resources, e.g., Source, Queue, and Processor, with several key differences.

e Conveyors have two ends, referred to as Start and End, that can be modeled independently.

e Conveyors cannot be rotated in the x, y, or z directions as Fixed Resources can. However, the height (z
location) can be changed at either end, resulting in a ramp or elevated conveyor.

e Asshown in the GIF to the right, Conveyors contain manipulation handles
to easily change their size and location. The crossed red arrows change the x
and y location of a Conveyor’s end. The double-headed green arrow changes | "\\
the Conveyor’s Radius. \ ;

e As discussed earlier, when Straight Conveyors were briefly introduced to move flow items between the
Finishing and Packing Areas, Fixed Resources and Conveyors were connected via transfer objects, either
by an Entry Transfer or Exit Transfer. These transfers ate automatically created when an A-Connection
is made between the two object types; therefore, transfer objects are not a part of the Library.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION / 72 AUTODESK

e Conveyor segments are automatically joined. When two Conveyor segments are brought together, they
become joined; i.e., segments are not connected using A-connections. The connecting object is called a

Conveyor Transfer.

e Each Conveyor segment has a direction of travel, indicated by an arrow on the conveyor surface that is

visible when the object is selected.

e A Conveyor may be accumnlating (the default) or non-accumnlating. An accumnlating conveyor operates like a
“roller conveyor,” where an item travels along the conveyor until the end and stops if it cannot be removed
(downstream object or transport is unavailable). Subsequent items continue to flow on the conveyor and
stop behind the one at the front. A non-accumnlating conveyor operates like a “belt conveyor,” where, as in
a roller conveyor, an item travels down the conveyor until the end and then stops if it cannot be removed
(downstream object or transport is not available). However, on a belt conveyor, when one item stops, the

belt stops, and then all other items on the conveyor stop in their current location.

The figures to the right and v % oot ¥
: “End” w1 | ZraghComeeyond MO
below show the basic —_— '
located at =t B Lol
1 i -2 o + Template <7
properties of a Straight (%, 7) = 2 = = T
Conveyor and a Curved (10, -5, 1) Flaxt s
Conveyor, respectively. [bty st (8
= Conveyor o)
. - L4
Horizontal . * z
Length st [m0r H-s00 2] Los Reverse the
=10m @ bdl D Hom Hie direction of
— e B Tom de B item flow
woih . n
Fnantd legh | 1040 "
,,,,, [\rtslacgh
Conveyor’s — VS R S S
o o — e Socw g
direction
: = Comveynr Nehavtor pa: -1 §
of flow I Aoamaing
Sl _U_J.:.‘ nivin
Nrmeraten nos GUEI
Cocde s [miTinye
Azpee s Sowee % 1,1 ln i
Naingsceer t L+[cw0 |x
Howtor | Dvday “,‘:,:, e
Entry Spaze t L+[co0 :
| Fronst 1nbarual Viorpavant P an Sresl
Location & [o B
Sizing handles - Groups ?
[R X
v Dz ol Dbnwet
“Start” i = Triggers ?
_—ay - oy
located at =
(x) ,‘" Z) =
(10, -15, 1) :

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

Radius sizing handle Location &

Sizing handles

v X Praverter x

| Qunsiuiecyu? |~
.)
Conveyor’s o St tas 22
direction - Tempste =2
3 L7
of flow 2L 7 ¢
raxt iy
Jastmwvady oxt a3
-] Camieyer 9
- 2

Reverse the
direction of
Conveyor Transfer
object; automatic
link between
conveyor segments

item flow

_JWus Lergh

(AR Pl Conra s v | o

- la
Soter S foce |G

= | Cnmemyor Nebavinr %7

Refer to the two figures above.

e The size and location of both types of Conveyors can be manipulated via handles at either end of the
Conveyor segment (the crossed red arrows) or, more precisely, in the Properties window.

e The radius of Curved Conveyor objects can be changed either by the radius handle, the double-headed
green arrow located in the middle of the conveyor segment, or, more precisely, in the Properties window.

e The direction of flow of a Conveyor can be changed using the double-green-arrows button on the
Properties window, as highlighted by the red circle in the figure above.

The following figure provides more detail on the properties of the Curved Conveyor. Again, these properties
are changed either through the resizing handles on the objects or the Properties window. The figure below
provides a few examples of how these properties affect the location and shape of a Curved Conveyor.

® Radius is the size of the curvature of the conveyor, as measured from the center of a hypothetical circle to
the midpoint of the conveyor width.

e Start Angle is the rotation, in degrees, to the location of the Start of the conveyor.

® Sweep Angle is the rotation, in degrees, from the Start to the End of the conveyor.

Also, in the figure below:

e (Case A shows a conveyor segment that starts 90 degrees below the horizontal (Start Angle = -90) and is
formed by sweeping up to the horizontal (Sweep Angle = 90) with a radius of 4 grid units (meters).

e (ase B is the same as Case A but with a smaller radius.
e (Case Cis the same as Case A but starts at a different location (Start Angle = 0).
e (Case D is the same as Case A, except it sweeps in the opposite direction (Sweep Angle = -90).

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION ‘ 72 AUTODESK

L
Surface of conveyor atz = 1.0 -
.5 Statmbies 7Y

- Template -
Lt & R
% S £

Width s e T i
\ == 10,00] 0.0 ol 1m
\ (ol 00 ol im

Radius = 10.0

! 0) T 23
('.107 0,) Location (101 07) Covenyny
Start End — v A0

Start Angle = 180 Sweep Angle = -180

-
A B k’[) 1 D
Radius =4 Radius =2 Radise =3 Radius =4

St = Start Angle = -90 Start Angle = -90

Start Angle = -90 Start Anplc ’ Start Angle = ()

3 Sweep 4 .= Sweep Angle =90

Sweep Angle = 90 Sweep Angle = 90 Sweep Angle = 90 WECP DR

It is important to note that some Conveyor properties are not independent. For example, in a Straight
Conveyor, the End Location and Horigontal Length are related; ie., changing the Length automatically
changes the End Location. Similarly, for a Curved Conveyor, the End Location and Radius, Start Angle, and
Sweep Angle are related; i.e., changing either the Radius, Start Angle, or Sweep Angle automatically changes
the End Location.

Obtaining the proper shape involves experimenting with the settings.

Two objects related to Conveyors are used in the example model — a Decision Point and a Photo Eye, both

of which are objects that are placed on Conveyors.

A Decision Point is an object that allows logic to be placed on a Conveyor. The logic is typically $
implemented through a Trzgger that fires when an item enters the Decision Point or leaves it.

A Photo Eye is an object that also allows logic to be placed on a Conveyor, and its logic is also implemented
through a Trzgger. For example, the logic fires when an item blocks or covers the Photo Eye; similarly, logic

tires when a Photo Eye is not covered or blocked.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

The base model for the additions described in this chapter is Primer_11 that was saved at the end of
Chapter 18. However, a copy of that file was saved as Primer_12; thus, we begin with that file.

19.2 Incorporating conveyors into the primer model

The conveyor system for the primer model is shown in the figure below. It links the Finishing and Packing
Areas. The conveyor loop provides buffer capacity if work builds up in the Packing Area. Containers move
from the Finishing Machines onto the loop conveyor and proceed to the conveyor segment leading to the
Packing Area. If the Packing Area segment is full when a container arrives, it continues on the loop and tries
the segment again on the next pass. This process continues until the container enters the Packing Area. This
loop may move to the Packing Area in a later design, but this is sufficient to introduce Conveyor objects.

" O o

Note in the figure above the Entry/Exit Transfers that are highlighted by orange circles; they link Fixed
Resources and Conveyor segments. Also, note the Conveyor Transfers that are highlighted by green circles;

they link Conveyor segments.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION #2 AUTODESK

As described earlier, when precisely placing objects on the modeling surface, it is often best to work in a two-

dimensional (2D) environment without perspective. Therefore

» Set the model view to 2D by right-clicking on the modeling sutface, selecting View, and then Reset View.

» Turn off the perspective by right-clicking on the modeling surface, then unchecking the Perspective
Projection box in the View Setting pane of the Properties window.

The major steps for modeling the conveyor system are as follows.
1. Construct a loop using Straight and Curved Conveyor objects.

2. Use Straight Conveyors to add spur lines to the loop, from the Finishing Machines and to the Packing
Area.

3. Use a Decision Point and Photo Eye to add control logic so containers go to packing if there is space on
that spur line. If the packing line is full, containers loop around until space is available on the packing spur.

The loop conveyor system will replace the Conveyor segment named FinishToPack.
» Select the Conveyor FinishToPack and press the Delete key. Deleting the object automatically deletes all of
its connects, from the Finishing Machines and to the Packing Station.

Construct a loop using Straight and Curved Conveyor objects.

» Sclect the Straight Conveyor object from the Library. This will be considered the straight conveyor near
the Finishing Area.

» Click on the modeling surface near the Start location of the Conveyor.

Properties X
. . . =] | StConv_Finishi ?
» Click on the modeling surface neat the End location of the Conveyor. T i~ @
+] Statistics 7?
+] Template &y ?
» Press the ESC key on the keyboatrd to get out of “add conveyor” | 2 tabels 752
. . . . -J Conveyor g 9
mode. If ESC is not pressed, each click on the modeling surface will -2
repeat the two steps above and continue to add conveyor segments. X Y z
Start \ -2.00 \:| -6.00 \:\ 1.00 \:
. S End 200 4600 [1.00 g™
» Name the object S#Conv_Finishing. | =] |
Location [—2.00 ‘:I-G.OO M 1.00 ‘:

Again, objects can have any name, but it makes it easier to reference | .. o m
objects when they have meaningful names. How and where object |oimntatengts [2200 |m
referencing is used involves more advanced topics, but it is important | [vitualLength 10.00

to build good modeling practices eatly in the learning process. Visualization RollerConveyor o)
Roller Skew Angle D
s +| Conveyor Behavior a2
» Position this 12-meter segment just to the right of the Divider object | croups 2
FM_Divider. Its precise position information is shown in the figure to | =) Triggers ?
the right. & -

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» Copy and paste the Straight Conveyor and position it about four meters to the right of S#Conv_Finishing.
It will be the straight conveyor near the Packing Area.
» Rename the object S#Conv_Packing.
Properties X
> Its precise position information is shown in the figure to the right. 2] [StrConv.Padkng ko
+] Statistics 22
+] Template R ?
» Use the double-green-arrow button to reverse the direction of flow | Labels 752
on th e C onveyo T ~-| Conveyor Compare Properties (5§, ?
-/
X Y z
st [2.00 oo [2 100 z
End |2.00 _:[6.00 A:[1.00 O
Location [2‘00 V:[&OO ':[1.00 =
Width 1.00 m
Horizontal Length | 12.00 |m
[Jvirtual Length 10.00 r
Visualization RollerConveyor v IE ae
Roller Skew Angle |0 |
+| Conveyor Behavior e 2
+] Groups ?
= Triggers ?
B v
The following steps will connect the two straight g Z
segments with a Curved Conveyor, and the properties S i ts @
. . 4] Statistics 21
of the Curved Conveyor segment should be similar to S Template 3
that shown in the figure to the right. e 22
- 'O
» Sclect the Curved Conveyor segment from the et [200 [Esw Fio E
Libra End | 2.00 <l 5.9 I+ 100 =
ry. Locaton | 0.00 2l 59 |2 1oo
vidth | Loa m
> Click near the top of the Straight Conveyor e 08
.o Start Angle [8000 % des
StConv_Finishing. This will be the Start of the Curved Svewhre 13200 =
Conveyor. S
VausEaten Rolercanveyer T 4
Reller Shzn Argle [0]
» Click near the top of the Straight Conveyor 2 Comeeyer heponeer =
StConv_Packing. 'This will be the End of the Curved Conveyor.
» Rename the object CurvConv_Top.
» Check that the properties are similar to those shown in the figure to the right.
» Check that the three conveyor segments are connected via Conveyor Transfers.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Similarly, the following steps will again connect the two

straight segments with another Curved Conveyor, thus

v X Properfies x

creating a loop. The properties of the Curved [CurvecCanueyor2 =1

.. . : | Statistics 22

Conveyor segment should be similar to that shown in : = =5
| Labels

the figure to the right. I

» Sclect the Curved Conveyor segment from the

Library.

» Click near the bottom of the Straight Conveyor

StCony_Packing. This will be the Start of the /\ - 7 -
2 /Jm\\\\\\\\\\\ Bl i (o

Curved Conveyor. "(//

Visudizstion Roller Conveyor ' |3 ™

Roler Skew Angle | 0

» Click near the bottom of the Straight Conveyor Py
StConv_Finishing. This will be the End of the
Curved Conveyor.

» Rename the object CurvConv_Bottom.
» Check that the properties are similar to those shown in the figure to the right.
» Check that the four conveyor segments are connected via Conveyor Transfers, thus forming a closed

loop with the flows going clockwise.

Add three spur lines to the loop.

The spur lines connect the two Finishing Machines and the packing station to the loop.
The Finish Machines put finished containers onto the conveyor for transport to packing.
» Sclect the Straight Conveyor segment from the Library.

» Click anywhere on the modeling surface to set the Start ot left end of the segment.

» Click on the modeling surface about 2.5 meters to the right of the Start location, creating a horizontal

conveyor spur.

» Press the ESC key on the keyboard to get out of “add conveyor” mode. Recall that if ESC is not pressed,

each click on the modeling surface will repeat the two steps above and continue to add conveyor segments.
» Name the object S#Conv_FM_1.

» Make an A-connection from the Processor FinishMach_1 to the sput, Straight Conveyor S#Cony_FNM_1.
Note the automatic creation of the Entry Transfer object on the spur segment.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» Move the segment into position as shown in the
10

figure to the right.

> Position the segment so that the spur, Straight
Conveyor S#Cony_I'M_1, automatically connects to

the loop conveyor StCony_Finishing. Note the
connection is made once a Conveyor Transfer

object links the two conveyor segments.

Create the spur for the second Finish Machine, which is

shown already connected in the figure to the right.

» Copy and paste the spur created above, Straight
Conveyor S#Cony_FM_1, anywhere on the

modeling surface.

» Name the object S#Comy_FM_2.

» Make an A-connection from the Processor FinishMach_2 to the new spur, Straight Conveyor
StrConv_FM_2. Note the automatic creation of the Entry Transfer object on the spur segment.

» Move the segment into position, as shown in the figure above.

» Position the segment so that the spur, Straight Conveyor S#Cony_FM_2, automatically connects to the
loop conveyor StConv_Finishing. Note the connection is made once a Conveyor Transfer object links the
two conveyor segments.

Create the spur from the loop to the packing station.

» Copy and paste the spur created above, Straight Conveyor S#Conv_FM_2, anywhere on the modeling

surface.
» Name the object FinishToPack.

» Make an A-connection from the Conveyor FinishToPack to the packing station, Combiner Packing 1. Note
the automatic creation of the Exit Transfer object on the spur segment.

» Move the segment into position, as shown in the figure below, and ensure it connects with the loop
conveyor. If the two segments are near each other, a Conveyor Transfer object will automatically join
them.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Properies x

= FreaiToPack o
= < Statistes. 2
5 < Towplata x 7
g il Labels /_: ;
E= £
= |) Start 2io.0 2 L0 -
5 ‘ . £ 0 [Sfooo 100 = VT
= | wamn 250 | 5 2.0 S
| =+ A TR v T LY ' i ! wdh L0 o
:j HHESE IS iYL : e i :
| - l l l l | ‘ I ! 'i:‘:’;"‘?v" ”m‘hr’.n\ln -9 %
| o N LULLLEL \ ‘} L ' | Raler Sham Ange | D)
[LLLLLELLLLLL L e |) Conweyar Bebavior x?
- | ;IW—I ?

{ -1 Triggers. ?
= .

Add control logic

The control logic will ensure containers only go to packing if there is space on the spur line. If the packing line
is full, containers remain on the conveyor loop until space is available on the packing spur. The logic is
implemented using the Photo Eye and Decision Point objects.

Add a Photo Eye to the packing spur to detect when containers are backing up on the conveyor.

If a container covers the photo eye, then the conveyor is considered full, and no more containers should be
sent down the spur until the photo eye is uncovered.

» Drag out a Photo Eye object from the
Library and place it on the spur conveyor
FinishToPack, as shown in the figure to the
right.

» Name the object PE_Pack.

» Using the button on the Labels pane,
select . Add Number 1abel to create a label.

e Name the label Cover.

e Use the default value of 0.

e Check the Automatically Reset box.
This will set the label value back to 0
whenever the model is Reset.

The label Cover will have a value of 7

when the Photo Eye is covered by a

L

et T AR R

container and 0 when it is not.

» Create an On Cover trigger using the values in the figure shown to the right.
When the Photo Eye is covered by a container, the Cover label value will be set to 7.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 196 #2 AUTODESK

» Create an On Uncover trigger using the same values as above, except Value is 0.
When the Photo Eye is not covered by a container, the Cover label value will be set to 0.

» Notice in the Ports pane that this Photo Eye is connected to a Decision Point that is created in the next
step.

Add a Decision Point to check to see if containers are backed up so far on the packing spur that it sends the
current container to the spur. As defined above, if a container covers the photo eye, then the conveyor is
considered full, and no more containers should be sent down the spur until the photo eye is uncovered.
Therefore, the Decision Point sends the current container straight ahead so it remains on the loop.

» Drag out a Decision Point object from the
Library and place it on the Straight
Conveyor S#rCony_Packing, as shown in the

Decision Point object

figure to the right.
» Name the object DP_PrePack.

» Make an A-Connection from the Decision
Point to the Photo Eye defined above. &

Note the connection is shown in the
Input Ports part of the Ports pane.

» Create an On Continue trigger using the

values shown in the figure to the right. This 3 it “r
is a Send Item trigger that decides where to [

send the item based on current conditions.

The Condition it evaluates when an item enters the Decision Point is
current.outObjects[1].Cover == 0
This is a test to see if the value of the label named Cowver on the object that is connected to Decision
Point’s first output port, which is the Photo Eye object, is equal to 0.

If the label value is equal to 0, meaning the Photo Eye is uncovered, then the container is routed to
the Destination whose value is current.outObjects[1]. The destination is the Photo Eye object, which puts
the container on the spur conveyor to the Packing Area.

If the label value is not 0, meaning the Photo Eye is covered, then the container is not routed to

packing, and it continues on the conveyor it is currently on and goes around the buffer loop.
Add all of the Conveyor objects to the A* Navigator tool so that the operator avoids these objects when

traveling.

> Open the A* Navigator tool and select FR Members in the Members section of the interface.

» Using the button, select all Straight Conveyor and Curved Conveyor objects.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

> Reset and Run the model.
The operation should resemble the figure shown below.

Note how the containers move on the conveyor system. Under the current model’s settings, it is unlikely the
Packing Area conveyor will back up enough to cause containers to be routed around the loop.

Also, note the Finish Operator’s travel path as shown by the A* Navigator’s heat map.

If the Operator travels through an object and the object is in the A* Navigator’s list, make sure there is no
gap between objects. For example, the Operator might pass through the Conveyor and Packing Table. In this
case, note the slight overlap between the two objects that is highlighted by
the red circles in the figure to the right. If there is a gap, a Task Executer
will pass through no matter how small the gap; i.e., the TE’s size is not

considered.

% If you haven’t already done so, save the model. Recall that it is good practice to save often.

Use the Save Model As option in the File menu to make a copy of the existing model to be further
customized in the next section. Again, you can use any file name, but in the primer, the next model is referred

IE

to as Primer_13.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION #2 AUTODESK

20 USING AN ITEM LIST FOR COMPLEX MODELING LOGIC

Chapter 20 adds more complex routing logic in the Finishing Area in terms of how containers are
selected for finishing. The logic is implemented using the List tool. A few Parameter values are updated

prior to the logic change and two charts are added to track the contents of the conveyors.

In the Finishing Area of the primer example, the current model uses the default logic in the Queue object to
determine the order in which containers are picked up by the Finishing Operator. That default logic is first-
come, first-served (FIFO); i.e., items are processed in the order in which they arrive. In other words, the items
that have waited the longest are processed first. This is a common way for queues to operate; many human
systems operate this way because it is perceived to be the fairest.

However, there are exceptions to this means of processing, such as when items are processed by priority. For
example, patients in a hospital waiting room do not follow the FIFO rule - patients are triaged based on the
seriousness of their situation. Also, customer orders are often processed before those that have waited longer
if they are designated as close to a due date or late, or if the customer paid a premium to get the order processed
quickly.

The container processing logic will be changed in this system.

First, it will be changed to process containers by using the shortest processing time (SPT) rule — process the
items that are the quickest to process first. In production control theory, processing by SPT results in more
throughput than by using FIFO. Based on the process times, the preferred order for finishing containers is:
Type=1 first, then Type=2, and then Type=3. (Recall that finishing times are 15.0, 20.0, and 30.0 minutes for
types 1, 2, and 3, respectively.)

One problem with SPT is that some containers, Type 3 in this case, may wait too long. Therefore, the new
processing rule will be to use SPT, but if a container waits more than a threshold, say 30 minutes, then it will

be processed first.

However, before implementing this new processing rule, some of the operational parameters are updated based

on revised engineering estimates. This also provides a refresher on some aspects of the model.

The base model for the additions described in this chapter is Primer_12 that was saved at the end of
Chapter 19. However, a copy of that file was saved as Primer_13; thus, we begin with that file.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

20.1 Parameter updates

Three main factors are driving the updating of some of the model parameters:
1. Engineering believes the Finishing Area can process more than the current production rate with two
machines and one operator. It estimates it can accommodate 25 percent more production without

exceeding the new container buffer size of 10.

2. Marketing sees a shift in the product mix with less demand for Type 1 and more demand for Product 3.
They estimate the mix will be 30% Type 1, 35% Type 2, and 35% Type 3.

3. Based on the two changes above, Engineering has updated the frequency and batch sizes for the

components. One change is that both components will be replenished houtly. Recall that Component A
was replenished hourly, but Component B was every half hour.

Implement the changes as follows.

> Increase the production rate of the containers. If the average rate [Ppropertes x
increases 25%, then the average time between arrivals decreases by | @ |Contanersirive |1+t @
.. +] Statistics 2

25%. Assume the same Empirical Distribution is relevant; just the = Z
+| Template &y ?
sampled values need to be reduced by 25%. Therefore, multiply the | i visuals 2
Empirical Distribution value by 0.75 in the Inter-Arvival Time ﬂ:"‘*‘s A &i
-] Source N ?

, .

property on the Source’s Source pane, as shown in the figure to the |_ -~ o
ﬂght- Arrival Style Inter-Arrival Time v

[Arrival at time 0

Inter-Arrival Time

> Change the value of Buffer Size to 10 in the General Parameters |, :-empiricalimesetmeenirvas) mn v #
table. +] Output e ?
+| Ports 2
. =l Triggers ?
» Update the values in the Empirical Distribution Product Mix to & -
0.30, 0.35, and 0.35 for Container Types 1, 2, and 3, respectively. On Creation
Set Label and Color l:r @ E X

On Exit
» Change the frequency value for CompFreq B to 60 in the |[[AdRowandDatztocobalTable |15 @ & X

ComponentFrequency Parameters Table.

» Change the batch size values as follows:
e CompBatSy A to 4 in the ComponentBatchSige Parameters Table.
e CompBatSy B to 11 in the ComponentBatchSige Parameters Table.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

To help in the subsequent analyses, add two new charts to a new Dashboard. One will track the number of

containers on the packing spur conveyor over time, and the other will track the number of containers on the

loop conveyor between the Packing and Finishing Areas.

» Create a new Dashboard and name it Conveyors.

Based on the figure to the right, build a [aoromm e = conponers 2GRS S 7
chart to display the number of Fe | Contentsof Padnd s i<t e
. . - _ Options 7
containers on the packing spur Contents of Packing Spur Cblects
) ¢ # 2 X 83 “®
conveyor over time. ; etk
» Select a Content chart from the || 4
Content section of the Dashboard 2
Library and drag it onto the new % .,;,: 2500 3000 3500 3000 4500
Dashboard.
~-| Settings 2
Contents of Loop Conveyor Clshow Legend
» Name the chart Contents of Packing ' Vhimsope (R Sl el
Sp 15 Y Axiz Range Ful Range
. . 05| [[]Tive Wndaw Secords
» Define the chart in the Options ’ Tme AusMode: [Srowmuraton | |[Mrs v
and Seftings pane in the % 2000 3000 4000 Bk e g S
. . . A Text ?
Properties window shown in the & Colors ?
. 1] Serting ?
figure to the right. e -
Based on the figure to the right, build = |& camntasimossmes = conponzon EERE v X Popetes x
a chart to display the number of SRS S Cooeror |12 'F“:’
containers over time on the loop Contents of Packing Spur Evirence Objece
oL 4 ® o
conveyor between the Finishing and
Packing Area.
» Select a Composite WIP chart from ——
Exit Obyjec!
the Content section of the 0 500 1000 1501 .u-m 7500 3000 3500 4000 4500 A, L)
StCarw_Frishng
Dashboard Library and drag it
onto the new Dashboard. Contents of Loop Conveyor
WIP Display WP 5
—| Settings ?
» Name the chart Contents of Loop . iR
CMW@/M‘. ‘ ¥ &us Scops Rarge cahulzted ung 2 Lata
¥ Az Range
» Define the chart in the Options 02000 0
. . I nime wandow 0,00 Secorriy
and Settlngs pane n the Tme Axs Made Show Duraton v | Mrut=s
Properties window shown in the Dawstk [sta s
. +| Text 2
figure to the right. e 2
+1 Sorting 2
+ Wancad 2

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

» Reset and Run the model. Observe the model behavior and the charts. A screenshot during a model run
is shown in the figure below.

- Contents of Packing Spur

o

SN

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Contents of Loop Conveyor

% If you haven’t already done so, save the model. Recall that it is good practice to save often.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 0 #2 AUTODESK

20.2 Simple priority routing using an object trigger

To get more throughput, DPL wants to process containers by using the shortest processing time (SPT) rule,
i.e., process the quickest items to produce first. Based on the process times, the preferred order for finishing
containers is: Type=1 first, then Type=2, and then Type=3.

To represent this in FlexSim 1s quite easy. As shown in the figure @ [Contanerstorace 1 12 @

to the right, the contents of the Queue can be reordered |7 statistics 72

whenever an item enters. 4 Template =

. . . +| Visuals &y ?

» 1In the Triggers section of the Queue ContainerStorage e — y T K
Properties window, add an OnEntry trigger via the = Queve -7
b

' Item Placement Horizontal Line v
Stack Base Z 0.10 m

» Use the button to the right of On Entry textbox, select |uro

the Control category, then Sort by Eixpression. [perform Batcting
+| Output &y ?
. . '+ Input 2 ?

» As shown in the figure to the right, change the Order | . croups 2

property from the default Descending to Ascending using the |4 Ports ?
. . | Triggers ?
dropdown menu. Ascending is chosen because the Type=1
. . ae v

containers should be processed first, then Type=2, etc; i.e., [, ,

A A Sort entering flowitems by a given expression and in the A

items should be arranged in the Queue by || ovenorder.

. . . (

increasing/ascending values of the label Type. l Order Ascending v

" Expression | item.Type - 2 I
> The default Expression property, item.Type is used as the [: |
ar

sort critetia, i.c., the value of the label Type on the items in | E— ——————
the Queue. If multiple items of the same type are in the Queue, then they are arranged in the order in
which they arrived. Therefore, two ordering rules are in effect: first, order by type, then by age.

Note that this approach changes the order of the items in the Queue — the contents of the Queue are sorted
each time an item arrives to the Queue. The item at the front of the queue is sent to the first available object
(a Processor in this case). Thus, containers are finished (processed at the Processors) based on the SPT priority
rule. Many systems behave this way.

However, other systems maintain the order in which items arrive and are selected from the Queue based on
the SPT rule. This would be the case if items arrive on a conveyor - items maintain the order in which they
arrive since they cannot physically be reordered. While in many cases, this is a subtle difference, it can affect
performance. For example, in this case, if a priority container is the last to arrive, then the Finishing Operator
needs to travel to the end of the Queue to load the container rather than taking it from the front of the queue,
resulting in a longer travel time. Of course, the level of detail is always an important modeling decision. In many
cases, it might be best to use the quick change as done above, note an assumption that this does not significantly
impact performance, and then revisit the assumption later.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

The use of the List tool, described in the next section, does not reorder the queue; it just identifies the next
item to process based on a specified rule.

L . .
If you haven’t already done so, save the model. Recall that it is good practice to save often.

gn Use the Save Model As option in the File menu to make a copy of the existing model to be further
=] customized in the next section. Again, you can use any file name, but in the primer, the next model is referred
" to as Primer_14.

20.3 Multiple-criteria routing using Lists

One drawback of using the SPT rule in this example is that the Type 3 containers may wait a very long time.
This occurs because if any Type 1 or 2 items are in the Queue when a Finishing Machine becomes available,
they will be processed before any Type 3. This issue is addressed by using the following rule:

Process containers based on their Type unless some items have waited “too long,” then process them first.

Of course, “too long” must be specified, such as one hour. This is called the Wait Threshold. The List tool is
used to implement this more complex rule.

Prior to introducing Lists, two new constructs, “pull” logic and “push” logic, are defined.

e Pushlogic. In the current model, items are “pushed” from the Queue to the Processors (from
ContainerStorage to FinishMach_1 and FinishMach_2); i.e., the routing decision is in the Queue, and it
pushes items to the first available Processor by default or by a rule specified in the Send To Port trigger
on the OQutput pane of the Queue. The default rule is First Available, but many others are available on the
dropdown menu, such as Randon, Round Robin (alternate between machines), By Expression (using the
value of a label, such as Type), etc.

e Pul/logic. The routing decision between the Queue and Processors is moved from the Queue to the
Processors. Processors pull items based on specified criteria rather than have items pushed from the
Queue. The pull logic is enabled on the Processor’s Input pane by checking the Pull box. The values
for the Pull Strategy and Pull Requirement are then specified.

The base model for the additions described in the remainder of this chapter is Primer_13 that was
saved at the end of Section 20.2. However, a copy of that file was saved as Primer_14; thus, we begin
with that file.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Before proceeding with the model, it may be better to turn off the heat map from the A* Navigator tool.
» Uncheck the Show Heat Map box on the Visual tab.

Lists, also called Global Lists, have many uses in modeling. Lists are tools that can create complex flows
between objects. There are many types of Lists available in FlexSim - Fixed Resource List, Item List, Task
Sequence List, Task Executer List, and General List. In this example, an Ifem List is used to implement the
routing logic specified above.

Information is pushed to and pulled from lists when events occur. Typically, an event causes an entry to be

placed on a list, and another event causes an entry to be pulled or removed from a list. The information about

an entry is contained in fields. The overall structure of a list is like a table.

As a simple example, consider the simple To-Do list in the figure below. An entry is something that needs to
be done and is a row in a list. Entries are put on (pushed to) a list as a result of an event occurring. For
example, in the To-Do List, when we think of something or are told to do something, we make an entry onto
ot push to the list. Entries are typically added at the bottom of the list. Entries are removed (pulled) from a
list again when an event occurs. For example, in the To-Do list, an entry is removed or pulled from the list

when it is completed or deemed no longer necessary to be done.

Fields
Task When Where Priority
Replace filters Saturday Home Normal
T Pay electric bill Today Home High
. Grade tests By Thursday Office High
Entries 50 cleaning After Tuesday Out Normal
l Plan summer trip Anytime Home Low

The columns in the list are called fields and represent characteristics of entries, such as in the To-Do List, a
brief description of what needs to be done (Task), when it needs to be done (When), where it needs to be
done (Where), and how important it is (Priority). Thus, each entry has a va/ue associated with each field.

In the case of the primer example, as containers enter their storage Queue, the Queue pushes information
about the item to a List, i.c., a list entry is made. When available, Processors scan all of the list entries and
pull an item to process based on specified criteria. Scanning the list and selecting an item is referred to as a

query.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

The threshold value for the longest time an item should wait is stored in a Parameters Table. This way, the
threshold value can be easily changed. Simulation experiments with this model will be used to set the
threshold value to find the right balance of maintaining the SPT rule but not allowing items to wait too long.
» Add a row to the Parameters Table named GeneralParameters.
» Name the parameter Threshold.
» Clicking in the Value cell brings up a button to define the following

o Lower Bound 15 minutes

o Upper Bound 120 minutes
» Set the current Value to 30.

> Use the button in the Toolbox to create an Item List #
from the Global List tool in the Toolbox and name it

ToFinish, as shown in the figure to the right. b

Fields must be defined for the List and how their values are

Expression tne(- pushTime -2

determined for each entry, i.c., what information about the item

Exprezgion Fiakd doance ADranc X

is put onto the list and how that information is determined. o SmsotineCsmsfomemualy v 50

Fields may be of different types, e.g., a label value on the item or Soremmpels [qeese Bdmens
Exprazzon vakso.up.ebnodeg. Gngth P

a calculation using an expression that is defined in each field’s
Expression property.

By default, FlexSim provides four fields, as shown in the figure to | o T ——

the right above and defined below. Fields are either Dynamic
(updated as affected states change in the simulation) or not (use and maintain the current value).

e Type is the value of the item’s label named Type at the time it is placed on the list (not Dynamic).

e age is how long an entry has been on the list. The default value is calculated based on the Expression
that is defined as time() — pushTime,
This means that the age of an item on this list is the current simulation time, time(), minus the
simulation time when the entry was put onto the list, pushTime. Since the Dynamic box is checked, the
value is constantly updated while the entry is on the list.

e distance is how far the item currently is from the object that will pull the entry from the list. The default
value is calculated based on the Expression that determines the straight-line distance between the item
and the pulling object. Since the Dynamic box is checked, the value is constantly updated while the entry
is on the list.

® queueSige is how many items are in the object where the item is currently located. The default value is
calculated based on the Expression value.up.subnodes.length. Since the Dynamic box is checked, the
value is constantly updated while the entry is on the list.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

In the primer example, only the first two fields are needed. Therefore, the last two can be deleted. Of course,
there is no problem leaving them on the List.

» Delete the distance and queueSize fields by using the “ button next to the Dynamic property
checkbox for that field.

In this example, additional information beyond the default fields is needed. The routing logic is based on
whether an item has waited longer than a threshold value, not just how long it has waited, which is what the
age field contains.

» Use the on the List Properties window, just under the Fzelds tab name, and select Expression.
This creates a new Expression field that will indicate if an item is “old,” i.c., has been on the List
longer than the threshold value specified in a Parameters Table named GeneralParameters.

As shown in the figure to the right: e — — ——
» Replace the default field name (fieldname) in the Expression o |
Field with the name O/d. Fiekis Sad e {penenl
» Check the Dynamic box. ; : = - e &
» Replace the 0 in the Expression box with the following: IO Dbrec %
(time()-pushTime) > Model.parameters.Threshold Expresmmn e - packiTime &/
e The expression to the left of the > (greater than sign) can e - s

be copied and pasted from the age expression above. Be
sure the expression is within parentheses (...).

e The context-sensitive editing in FlexSin facilitates
entering the reference to a model parameter.

The “Old” expression checks to see if the amount of time the
oa sosly o

entry has been on the List exceeds the threshold value (the

Parameter named Threshold that is stored in the GeneralParameters Model Parameters Table). If the time
on the List exceeds the threshold, then the comparison is 7z, and the field will have a value of 7. If the
entry is not on the List longer than the threshold value, then the comparison is fa/se, and the field will have

a value of 0.

Now that the List is defined, the model needs to push information to the List and pull information from the

List to decide which container to process next.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Push an item’s information to the List from

the Queue ContainerStorage, as shown in the

figure to the right.

» In the Output pane, use the dropdown
menu on the Send To Port trigger to select
Use List and then Push o Item List. Make
sure the ToFinish list is shown in the

menu.

» While in the Queue object, use the outer

“ button to remove the On Entry
trigeer Sort by Expression.

When doing so, a dialogue box will
appear asking, “Remove this trigger and its
logic?”; press the OK button. The List
logic is now controlling the item selection
from the Queue so the Queue no longer

needs to be sorted when items entet.

Pull from Fixed Resource List

Push to Item List

Ht

v X Properties X
|+] Statistics 7 ?
+] Template oy ?
+| Visuals oy ?
| Labels V=1
I Queue & ?
Max Content 10
Item Placement Horizontal Line
Stack Base Z 0.10
Ouro
[Jperform Batching
=) Output & ?
Send To Port
Push to ToFinish S ES A

Parameter >

First Available = S S

By Expression ;

Queue Size > femet

Random > =

Round Robin > ?

Use List > u
?

Port By Case

Conditional Port

By Global Table Lookup

Matching Item Labels

By Time of Day

Do Not Release ltem

ProcessFlow: Execute Sub Flow

The Finishing Machines will use information in the List to decide which container to process next. It will:

e Query the current List

e Select an entry based on the specified criteria

e DPull the information from the List

e Pull an item from the Queue based on the information

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

To implement the above logic, follow the instructions below
and as shown in the figure to the right. The changes are made
on the Input pane of the Processors’ (both Finishing
Machines) Properties window.

Follow the steps for FinishMach_1, then repeat them for
FinishMach_2.
» In the Imput section, check the Pull box.

» For Pull Strategy, use the dropdown menu to select Use
List, then Pull from Item List.
Be sure the List property value is set to ToFinish.

Two sort queries are entered using the button to the right
of the textbox. The first query sorts the List based on the Old
tield; the second query then sorts by the Type field. To do this:
» Select Order By (Sort) from the dropdown menu, and then
select O/d.
This results in ORDER BY Old ASC
» Change ASC to DESC.

-] FinishMach_1

+) Statistics
+| Template
+| Visuals

+| Labels

+| Processor
~| Output
Send To Port
First available

[TJuse Transport
~| Input

Pull
Pull Strategy
Pull from ToFinish

h

4

LY

Y

List
ToFinish

Query
ORDER BY Old DESC, Type ASC

&

f v
On Reset

’ Set Object Color

| 4

[

2
)

W | @

3 X

» Again, using the button, select Order By (Sor?) again from the dropdown menu, and then Type. Leave

the default ASC.

This results in the Query command: ORDER BY Old DESC, Type ASC

This command uses SQL (Structured Query Language) to sort the List and place the entries in the specified
order. The List is first sorted in descending (DESC) order of the values in the field Old. The values with
Old=1 (indicating they have been on the List longer than the threshold) are placed at the top of the list, and

those with Old=0 are at the bottom of the List. The List is sorted again by the values of item’s Type label,

and they are put in ascending (ASC) order of Type. As a result of the query, any entries in the list that are
beyond the threshold (Old=7) and a high priority (Type=7) will be at the top of the list. The priority here is

the containers with the shortest processing time.

Each Finishing Machine pulls the flow item from the Queue that is associated with the entry at the top of the

List, and the entry is then removed from the List.

» Be sure the above pull logic changes ate repeated on the other Finishing Machine.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

» Resetand Run the model. Notice, as in the figure to the right,
the operator does select the intended item in the queue. The
operator is moving to the red container (Type 1) for
processing even through there is an item (green) in front that
has waited longer.

» 'To view the current contents of the List, double-click on the ToFinish List in the Toolbox. As shown in
the figures below, go to the General tab and select the View Entries button.

A list entry is an item that has been pushed to the list and is waiting to be pulled.

Note that in the screenshot to the left below, there are five containers waiting in FIFO order in the container
storage queue. Three containers are considered “old,” so they will be selected before the others (Old=0).
However, Type 1 is the higher priority, so based on our decision rule, it will be selected first. That entry is
highlighted by the red box.

This result is shown in the figure to the right. Note in the figure that the Type 1 container was pulled from the
List by a Finishing Machine. The pull was made as soon as Finishing Machine 2 became available; i.e., it commits
to that item regardless of what happens after the pull. Also, note that the container is still in the storage area.
This is because the Finishing Operator has not yet picked it up. In this case, the Operator was repairing
Finishing Machine 1. Therefore, a few minutes later, the Operator will pick up the container and load it on

Finishing Machine 2.
~
2 ToFnsh Entries
TR e Toe e o
vdoe e |2e= [/ContairerStorags/Containes 3 7E.19 1
JCeatanarStorage Cocrare” J 5.5 - JContareeSty sgeCordasr ~3) 2 35,50 1
{orianeicege/Cmtzner o2 1 5 i : jCentarerstoagaiCormanarad 3 2207 C
: sLantanered 2 Ea2d ‘ /ContainerStorage/Continer~5 2 £52 c
SLommarerstorage/Contanar=4 3 20.33 0
SomarerStorage/Contanar~5 2 679 0

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Consider another example that was observed as the model was running. In the screenshot to the left below,
three containers are waiting in FIFO order in the container storage area. As per the List Entries table, none of
the containers are considered “old,” so they will be selected according to the Type priority rule (SPT). In this
case, the entry highlighted by the red box will be selected. This is actually what happens, as shown in the figure
on the right below. The first red container (Type 1) was pulled by a Finishing Machine since its entry has been
pulled from the list.

~ P
ToFweh Svres TaTnsh Evries
valoe e e | O VA Tym e HZ]

(cntanes Storaoe Cortane ¢ 19,54 ComainarsacrageCorvanar 2 M31 0

ST T T ST T R I o

A List backorder is a puller that is waiting to pull an item from a List.,

» To view the cutrent List backorders, double-click on the ToFznsh List in the Toolbox. Then, go to the
General tab and select the View Back Orders button.

In the figure to the right, which is from the start of a [~

. . . B - x
simulation, there are two List backorders, both Finishing [= reqieed [reeed [ied |
Machines. They are on the list because they are idle — they e B e e 1 : 9

want to pull items from the List, but there are none to

pull.

N
If you haven’t already done so, save the model. Recall that it is good practice to save often.

gn Use the Save Model As option in the File menu to make a copy of the existing model to be further
customized in the next section. Again, you can use any file name, but the next model is referred to as
‘ Primer_15 in the primer.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

PART VI - MODELING USING PROCESS FLOW + WAREHOUSING AND AGV

This section uses FlexSim’s powertul logic builder to complete the primer model. After introducing Process
Flow, it is used to include initial component inventory in the model, implement a means to manage component
inventory through a reorder-point system, and represent the order-fulfillment process. This section also
introduces two additional FlexS7m constructs that are key to modeling many operations systems — Racks and
Warehousing objects and AGVs and their associated objects.

e Chapter 21 introduces Process Flow, including basic concepts and the modeling environment. It also
describes some additions to the model that support the use of Process Flow.

e Chapter 22 describes several approaches to modeling the creation of an initial component inventory and
explains how to implement the more general approach.

e Chapter 23 uses Process Flow to incorporate a reorder point inventory system to manage components.
e Chapter 24 introduces the Rack object and describes its use to store packed containers in the warehouse.

e Chapter 25 defines the order-fulfillment process and describes how to represent it in the model by using
Process Flow. The process includes generating orders for containers, having an Order Picker gather the
appropriate containers, delivering a completed order to a fulfillment area, and completing orders by
updating an information system. Also, an output table is created that captures information on each order,
including the contents of each order and the time it takes to fulfill orders. Charts have also been added that
track the time it takes to fulfill an order and how many orders are waiting to be processed.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

21 INTRODUCTION TO PROCESS FLOW

Chapter 21 provides an introduction to Process Flow, including basic concepts and the modeling

environment. It also describes some additions to the model that support the use of Process Flow.

Process Flow is a major tool in FlexS7m for developing complex logic. While FlexS7z7’s 3D Obijects include
many properties and methods that can be used to develop quite sophisticated logic for modeling complex
operations systems, Process Flow greatly expands those capabilities. Combining Process Flow and 3D
Objects provides a highly robust and powerful simulation modeling environment. While Process Flow can be
used to develop more complex processing logic within 3D Objects, it is especially valuable for modeling
inter-object relationships.

Process Flow enables users to define and specify logic via a flowchart-like, drag-and-drop interface and link
the logic with objects in the 3D environment. Since this primer is intended to provide a basic introduction to
FlexSim, only a limited number of features and capabilities of Process Flow are described. However, this
should provide a good starting point and a solid foundation for modeling with Process Flow.

After introducing the basic concepts of Process Flow and describing its modeling environment, the primer
illustrates modeling in Process Flow via several examples. The first and simplest is to create an initial
inventory of components so models do not start at an oftentimes unrealistic condition of “empty and idle,”
where there is no work in process and all resources idle at the start of a simulation. The next example uses
Process Flow to implement a reorder-point inventory system in the model. Later in the primer, Process Flow
is used to model an order-fulfillment process. The latter two applications could be implemented via the 3D
objects but it would be quite challenging. The implementation would also not be very transparent because so
much of it would be implemented via custom coding in FlexSeript. Transparency is greatly enhanced by using
Process Flow since all of the logic is contained in one place, on the Process Flow interface, and not dispersed
in 3D objects. In addition, the logic is more transparent because the logic is represented in an easy-to-

understand flowchart-like format.

While the remainder of the primer focuses on Process Flow, the examples revisit aspects of the 3D model
and introduce additional features in the 3D environment, e.g., Racks for storage and AGVs.

Again, this chapter introduces the basic elements of Process Flow and its modeling environment. While the
interface and library of modeling tools are different than in 3D, the application is similar. As with 3D Objects,
Process Flow activities are dragged onto a modeling surface, connected to represent how a system behaves,
and are customized by specifying relevant property values. This chapter also describes the basic operation of a
reorder-point inventory system.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

21.1 Basic Process Flow concepts and modeling environment

As noted above, Process Flow is a part of FlexSim that is used to add complex processing logic into a simulation
model. The logic is used to define interactions among FlexS7m objects and other elements as a simulation runs.
While FlexSim provides a lot of logic-modeling capability through its drop-down menu options on 3D objects
and tools, there is a limit as to how much can be pre-specified. Typically, custom logic requires scripting or
writing computer code to implement the more complex logic. This can be done through FlexSin’s programming
language, called FlexSeript, a subset of C++. However, Process Flow reduces the need for programming by
using a set of logic-building activities that can be defined and combined in a flowcharting type of environment.

As with any modeling endeavor, building the logic in steps is always best.
Process Flow has its own logic-building interface, analogous to the 3D modeling surface, and its own set of

modeling objects, referred to as activities. The basic components of the Process Flow modeling environment

and their terminology are shown in the figure below.

Process Flow Tab
[Lbrary X % Model &1 PostOfca v X Propertes x]
%) -] Process Flow Properties ~
'd Process Flow Name
; 1| Post Offic

-] Token Creation S Sta‘:keld Block 43 | Post Office &
G Inter-Arrival Source image

#+ Schedule Source ST et mockdes\ProcessFion)| P [y

i+ Event-Triggered Source B L onler mva Activity Theme

= Basic & Get Service QOO | Y a v

1 2
. @-\ss-miabels x Moce Theme Settngs...
Library — & Detay 50 ~ p i
3 Unhappy Customers)€t Mode roperties
Custom Code

o, Decde Connector —
B0 £an .. AT

o Wait for Event {{® Service Window @ 1)
%o Create Tokens Token
3 sk | |

-] Sub Flow O Service Time Shared Asset
T2 Run Sub Flow ® End Service
@ st 3 Happy Customers
@ Finish View Tokens | »w Activiss

L; . More Propertes

7 Ch isual
Y -] Process Flow Views

L_ |3 Run Anmaton v v _|
L |
|
Process Flow View

e The Process Flow View is the workspace where logic is defined. It is accessed via the Process Flow button

on the Main Menu bar or the Toolbox. It is displayed as a tabbed window in the modeling environment.

e Logic is defined by selecting and combining activities from a Library, similar to the 3D objects in their
library. A part of that Library is shown at the left side of the figure above.

e As with the 3D objects, Properties are shown in the window to the right in the basic interface.

e In the workspace or View, logic is defined through connected activities, connected either in stacked blocks
or directed lines.

e Tokens flow through activities and trigger the logic elements.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

There are different types of Process Flows - General, Object, SubFlow, People - but only the General Process
Flow is used in the primer.

Activities are the building blocks of Process Flow - they are logical operations or steps in a logical process.

Activities are analogous to 3D objects since they are dragged from a library onto a modeling surface or

workspace. Also, like 3D objects, activities have properties that define their behavior. Activities are grouped

into the following categories. This primer only addresses a subset of the activities, but the complete list is
provided so that the reader is aware of the capabilities of Process Flow.

e Token Creation activities are analogous to a Source in 3D. Tokens are created based on inter-arrival times,
schedules, and “listening’ for specific events to occur in a 3D model. Listening to events in the 3D model
is a key capability in Process Flow; for example, when an event occurs in the 3D model, such as an item
arrives at an object, it may trigger the creation of a “token” in Process Flow which flows through activities
and executes the custom logic defined in the Process Flow View.

e Basic activities include assigning label values, implementing a delay in the flow, waiting for another event
to occur, making decisions (branching in the logic), destroying tokens (like a Sink in 3D), defining a custom

or special activity, etc.

e Sub Flow activities are used to create separate flow logic that contains a set of activities that may be used
by multiple objects or other activities. It is analogous to a function or subroutine in computer programming.

e Visual activities change the appearance of an object in the 3D model or trigger an animation on a 3D

object.

e Object activities are used to create, move, or destroy objects, such as flow items, fixed resources, Task
Executers, etc., in a 3D model.

o Task Sequences activities are used to build custom task sequences that are assigned to Task Executers in a
3D model, including travel, load, unload, delay, etc.

o Shared Assets activities are used to define, access, and manage the following:

o List activities enable pushing and pulling tokens, flow items, Task Executers, etc. to Lists, which can
be local to the Process Flow itself or tied to a Global List in a simulation model.

O Resources represent limited supplies of entities that can be acquired and released. They can simulate a
supply of goods, services, time, materials, employees, etc.

o Variables are used to store data in a centralized location that is accessible throughout Process Flow and
can be read and changed by tokens.

O Zones have two main uses - to gather statistics for a group of activities and to restrict access to a set of
activities based on token properties.

o Warehousing activities are used to find a slot or an item in a Rack object.

e Coordination activities manage relationships between multiple tokens in a Process Flow, including
splitting, joining, and synchronizing tokens.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

e Preemption activities manage interruptions in a token’s flow.

e Display activities annotate a Process Flow with text, arrows, images, and containers. They do not affect
the logic., just the visual appearance, which can make Process Flows better organized, clearer, and easier to
understand.

e People Activity Sets are preconfigured activities that are bundled together to model basic People Module
tasks, such as Walk then Process, Escort then Process, Wait then Process, etc.

e People Basic activities create or delete a Person object or define a People Process.

e People Resources are activities that facilitate acquiring and releasing People-related resources, such as
Locations, Staff, Transports, and Equipment.

e People Sub Flows are activities tied to pre-built Sub-Flow objects, including Walk, Wait in Line, Escort Person,
Transport Person, Move Equipment.

A token is a basic element of Process Flow logic. Analogous to flow items in the 3D environment, tokens flow
through activities as a simulation runs. Tokens are typically more abstract than flow items since they usually
represent logic flow rather than physical flow. Each token has a unique ID and a set of labels or characteristics.
Tokens are depicted as green circles in Process Flow as a simulation runs; they may change color depending on
their use and state.

Tokens move from activity to activity either by connectors or through stacked blocks. A block is a set of
activities that have been “snapped” together, i.e., activities that form a single sequence of process flow steps.

Tokens have Labels, which are an important part of modeling with Process Flow. Labels store information that
is used in the logic. As with the 3D objects, each label has a name and value; the value can be of any data type,
e.g., numbers, text, arrays, object references, etc. Similar to 3D objects, token labels are referenced in the dot-
notation format token.LabelName, e.g. token. Type.

The base model for the additions described in this chapter is Primer_14 that was saved at the end of
Chapter 20. However, a copy of that file was saved as Primer_15; thus, we begin with that file.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

21.2 Set up to use Process Flow to model inventory policy

Continuing the primer example from the previous chapter, Process Flow is used to model a reordering system
for supplying components to the packing area. Rather than having components delivered in batches on a
schedule, as in the current model, components are ordered when their inventory level falls below a specified
reorder point. As shown in the figure below, when the inventory level falls over time below a specified reorder
point (ROP), an order is triggered for a specified reorder quantity (ROQ) of the component, and that quantity
is delivered as a batch after a specified time (ROTime).

Inventory
Level —
Reorder Reorder
Point Quantity |
(ROP) ! (ROQ)
\) time
T
Reorder Time
(ROTime)

Therefore, three new parameters must be specified for each component: ROP, ROQ), and ROTime.
e ROQ is analogous to batch size, which already exists in the Parameters Table named ComponentBatchSize.
e ROP is specified as a quantity, level of inventory, and not time.

e ROTime is the total time from when an order is placed until it is delivered.

Another parameter to be considered in the model is initial inventory, the number of components on hand when
a simulation starts. It can be any value greater than or equal to zero. However, if the initial value is below the
reorder point, there would need to be logic that would ensure an order is placed when the simulation starts.
While this would not be difficult to include, for simplicity, assume the initial inventory value is above the reorder

point when a simulation starts. This can be_ensured by setting the lower bound of the parameter to the

component’s reorder point value.

Therefore, three additional Model Parameters Tables need to be added to the model — one each for reorder
point, reorder time, and initial inventory.

Since the reorder quantity is basically the same as the batch size parameter, which is already included in the
model in the Parameters Table ComponentBatchSize, batch size will represent the reorder quantity.

The parameters in the Model Parameters Table ComponentIrequency (time between batches) will no longer be
used since the reorder point system will replace it. However, leave its Parameters Table in the model in case
there is a need to return to the scheduled-order system. Also, some components might use the scheduled-order
system, and some might use the reorder-point system.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION / 72 AUTODESK

For the reorder point.
» In the Toolbox, select Statistics, then Model Parameter Table.

As shown in the table to the right, 2 Model ‘=FREOTaErPORE
» Name the table ReOrderPoint. parameters 2 |2 [Ga [X 4
» Add two parameters named ROPComp_A and | [= RO
ROPComp_A 6] v
ROPComp B. ROPComp_B
— Type Integer v
» For both parameters, set their Value for Type to LowerBound |1 v
Integer, Lower Bound to 1, and Upper Bound to 100. Upper Bound 100 M
Reference None
» Set the current values to 6 for ROPComp_A and 20 et } = Q\/‘t
tor ROPComp_B.
Similarly, for the reorder time.
» In the Toolbox, select Statistics, then Model Parameter Table.
As shown in the table to the right,
#% Model = ReOrderPoint = ReOrdertime"

» Name the table ReOrderTine.
> Add two parameters named ROTimeComp_A and | """ =

. Name Value Display Units Description
ROTimeComp_B. I | Declay £
ROTimeComp_A 60
» For both parameters, keep their Value for Type as ||rotmecomp_s 60

Continunous and set their Value for Lower Bound to
30 and Upper Bound to 450.
» Set the current values to 60 for both ROTimeComp_A and ROTimeComp_B.

Similarly, for the initial inventory:
» In the Toolbox, select Statistics, then Model Parameter Table.

As shown in the table to the ﬂght) #5 Model E ReOrderPoint E ReOrderTime E'm

» Name the table Initlny. Parameters = B3| (X §

> Add two parameters named Im‘z‘]nv_Cawp_A Name Value Display Units [Descripnon
and Initlny_Comp_B. iﬂlﬁﬂiﬁiﬁﬂi;ﬁi - A

» For both parameters, set their Value for L;:f - ::igzlr.parameters['ROPComp_A']x‘,'alue -
Type to Integer and Upper Bound to 100. UpperBound 100 .

» For both parameters, set their Value for Reference [None |~
Lower Bound to the value of the Saset [* @S

component’s reorder point. Since the

reorder point is defined as a parameter, the Lower Bound needs to reference the reorder point, as shown
in the figure above. For each parameter’s Value cell, use the dropdown menu to select Parameters, then
the table ReOrderPoznt, then the applicable component name.

» Set the current values to 712 for Initlnv_Comp_A and 30 for InitInv_Comp_B.

= - .
If you haven’t already done so, save the model. Recall that it is good practice to save often.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

22 MODELING INITIAL INVENTORY

Chapter 22 describes several approaches to modeling the creation of an initial component inventory

and explains how to implement the more general approach.

This chapter uses a small and simple example to introduce modeling with Process Flow. That example loads
components into their storage areas when a model starts, thus providing an initial inventory of components.

The first section describes a straightforward approach to defining the logic for creating an initial inventory.
However, the approach involves additional work when the model is scaled to consider more components.
Therefore, the second section illustrates a more general approach to adding initial inventory, which does not
require additional work when adding components to the model. While the extension is more complex and takes
more time to develop, by using it, the model scales as more components are added, and no changes are needed
in the Process Flow logic.

Using these two approaches illustrates that there are always multiple approaches to modeling a system. Two
experienced modelers are likely to approach modeling the same system very differently. These differences are
typically due to experience, background, modeling philosophy, how the model will be used and by whom, the
due date for the completed model, etc.

The base model for the additions described in this chapter is Primer_15 that was saved at the end of
Chapter 20. Thus, this chapter continues to add to the model Primer_15.

22.1 A simple approach

This first approach to creating an initial inventory is relatively straightforward and is a good introduction to
modeling operations systems in Process Flow.

» Through the Process Flow button on the Main Menu or via the Toolbox, select Add a General Process
Flow, and change its name from the default ProcessFlow to Reordering.

> As shown in the figure below, drag out three activities onto the Process Flow View or modeling surface:
= Schedule Source (from the Token Creation section of the Activity Library)
= Create Object (from the Objects section)
® Sink (from the Basic section)

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION ‘ 72 AUTODESK

> As shown in the picture above, link the activities using the Connector — move the mouse over an activity

until the mouse cursor changes to a chain, then holding down the left mouse button, drag the arrowed-line

connector to the other activity. The activities may be positioned by selecting them with the left mouse

button and dragging them to the desired position.

As shown in the figure to the right, when selecting an
activity, i.e.,, when an activity is highlighted in yellow,
handles are available to size the activity. The handles are
the small black squares around the activity box.

Also shown in the figure to the right, the properties of an
activity are displayed either by (1) selecting an activity and
viewing its properties in the Properties window, (2)
clicking on an activity’s icon, or (3) double-clicking the
activity.

Tme Name Quantity

an Al fiedd o edt

Assign Lk to Craatad Tekens

B Source H
J -n,JUu,P. -
U | oures 1A & @
B Enabied
Cffeet Tine
v 2
I Ragmat Schmduie
Amvals | 1 + Labels! @ B
X 2 3 = 2

[Inspest Schadda

Arrivals | 3 s s

* X r s =72
\r-—, | ere I\ -
< >

Seiact an arnival fiskd to et

Aszgn Labels to Crasted Tokens
-

For now, the only changes being made to the Process Flow are to the properties of the Create Object activity.

» However, change the name of the

e Schedule Source activity from Source to Initial Inventory A

e Create Object activity from Create Object to Create Component A.

The Create Object activity creates flow items that represent the components and puts them into their Queue

in the Packing Area. Note that the flow items are created directly in the Queue and do not come from the
Source. As a result, these items do not pass through the Queue’s OnEuntry trigger. Therefore, no logic on the

OnEntry trigger are invoked for these items. Of course, that logic could be moved to Process Flow.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Change the Create Object activity as described below
and as shown in the figure to the right. This activity
creates a specified number of components in its store
location.

» The value of the Object property is obtained by using
the drop-down menu, selecting Flowitems, and then
CompA.

The value of the Quantity property is obtained by
using the drop-down menu and selecting Parameter,
then Initlny, and finally Initlny_Comp_A.

This selection generates the command
Model.parameters[“Initinv_Comp_A"].value,
which FlexSim executes to get the value of the
Model Parameter [nitlny_Comp_A.

StoreCompA in the 3D model.

ST Reordering

» Initial Inventory A

L "
: t@ Create Component A :

3 Sink

v X Properties ok
~ | =] Activity Properties
"T.J. Create Component A ‘ A ‘i. 0
Object
CompA v /O
Quantity
Model.parameters.Initiny_Comp_A | v &F #
@createIn (O Create At
StoreCompA X2
@ assignTo (O Insert at Front of
token.item XA
Object Flow
None X2
Assign Labels to Created Objects
o
Name X
CompType v P
 Value
-7
Name X
BatchSize v
Value
Model. parameters.CompBatsz_A | v &5

The Create In location value is obtained by using the sampler (eyedropper icon) to sample the Queue

Add two Labels that are passed to the created object; in this case, a flow item representing components. The

labels and their values are added by the Source activity.

» Below the Assign Labels to Created Objects scction, press the button twice to add two labels.
» For the first label, set the name to CompType and Value to 1. The component type is 1, i.e., Component A.

> For the second label, set the name to Ba#hSize and set its Value by using the dropdown menu and selecting

Parameter, then ComponentBatchSize, then CompBatSz _A.

Reset the model and use the Step button to the right of the Run and Stop buttons on the Execution

toolbar. As the name implies, this moves through a model’s execution one step at a time. It will likely take

several clicks of the Step button for the items to appear since FlexSim executes multiple events within one

time period and at time zero.

At some point, clicking the
Step button results in a token
appearing in the Initial Inventory
activity. The next click of the Step
button moves the token to the
Create Components activity and
then to the Sink. When the token
the
activity, the initial inventory of

leaves Create Components

CompAs appears as shown in the

w X %3 Reorcering

» Initial Inventory A

*2 Create Component A

3 Sink

tigure to the right — there are 12
purple boxes in the Queue SwreCompA object.

=
If you haven’t already done so, save the model. Recall that it is good practice to save often.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

The problem with this approach is that it only creates inventory for Component A since the Create Components
activity is “hard-wired” for Component A. The following provides two variations to address this issue.

One approach is to create another set of activities for Component B. The modeling steps defined above could
be repeated, or the set of activities for Component A can be copied and pasted, then edited for Component
B’s property values. The latter approach is used here.

» Select the activities by holding down the Shift key and “lassoing” the
activities, 1.e., drag the mouse so that all of the activities are selected, - 2 -
as shown in the figure to the right. D Of® Initial Juenion 3
» Use the Cntl-C keys to Copy the activities, then click somewhere to . -
the right of Component A’s activities and use the Cntl-V keys to paste | = g = Create Component A &
the activities.
] - [
=Y Sink .
Edit the activity properties as [— i =
shown in the figure to the right. A | |i=1 s totw Broperiies
*3| Create Companent B Ad O
> The only change to the » Initial Inventory A » Initial Inventory B Cbject B i
. Comp3 v *
Schedule Source is to Cu::tr-' :
. .. Model.parameters[Initiny_Comp & w &F @
change its name to [witial »] [t AR
*5 Create Component A O | whg Create Component B m f—p| @ Createin () Create At
Inventory B. .] H e S
®) AssignTo () Insert at Front of
token,item X v .
For the Create Objects R ole o
] 1 Sink 1 Sink None X2
activity: Assign Labek to Created Objcts
B
» Rename the activity Create tame X
. (CampType - A
Component B. H valie)
» For the Object propetty, Nome f
use the drop-down menu i Z
and select Flowitems, then i Conou's: D [

CompB.

» For the Quantity propetty, use the property’s drop-down menu and select Parameter, then Initlny, and finally
Initlny_Comp_B

» 'The Create In location value is obtained by using the sampler (eyedropper icon) to sample the Queue
StoreCompB in the 3D model.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 222 72 AUTODESK

Edit the two Labels that are passed to the created object.

» For the first label, CompType, set its Value to 2, since it is a type 2 item or Component B.

» For the second label, BatchSize, set its Value by using the dropdown menu and selecting Parameter, then
ComponentBatchSize, then CompBatS3_B. Thus, this contains the batch size for Component B.

» Reset the model and use
the Step button to test

that the logic works # Initial Inventory A e Initinl Inventory B

properly. After several
clicks of the Step button,

g Create Companent A * Create Component B

the component items
3 Sink 3 sink

should appear in both

storage areas, as shown in

the figure to the right.
Note there are 12
Component As and 30

Component Bs, as defined in the Model Parameters Table.

This approach works fine, but the problem is that every time a new component is added to the system, the
process above needs to be repeated for each component; i.e., the activities need to be copied and pasted, and
their properties edited for the new component values.

The following provides a slight variation on the approach described above.

In this approach, all of the component’s properties are defined in the Schedule Source activity. The property
values are defined and stored in token labels, and then the token label values are used to create the components
in the single, generic Create Object activity.

In this variation, the activities can either be created from scratch or they can start with a copied-and-pasted
version of the previous Process Flow. This version can be created in the same Process Flow View, or a new
Process Flow instance can be created.

Regardless of where this version is created, if the previous version remains in the model, then the Schedule
Sources must be made inactive. Otherwise, they will all generate components, and too many will be in the
model.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 223 72 AUTODESK

To disable the Schedule Source, T % [i

A =) Activity P rti
uncheck the Enabled box in the ==

] — - n # | Initial Inventory A A g 9
Activities Properties window, as - :® [nitial Inventory A = I [JEnabled |m"
shown in the figure to the right. g e

[(Irepeat Schedule

When the Source is disabled, a “no” ¥ Create Component A Amvais| 1 |2 Labeis|o |2
or “prohibition” symbol (red-crossed —— . I?:‘ame Qmi]y 4
circle) appears over the icon on the - 2 —
activity object, as shown in the figure ¥ Sink Select an arrival field to edit

to the right. This prevents the Source Assign Labels to Created Tokens

from producing tokens. -

The values for Components A and B in the two Schedule Source activities are shown in the figure below.

s .« x haoi x B . o
Ay s : 3 L [SAameyn
E-‘ It ‘:“-'"'"""'E % Infiad trventory B [0 frvarrory & e O b Tnitial Imveniory & & Intial Tpvercry 3 8 e e] AdD
h{' T 4 > =/, 4 L | " S
& Lraxie Comoosents - : — -] % Uente Componercs
% ik 2 Sk - 5
v ' ; i P 2 T
:~ -/ — - W
%7
As shown in the figure to the right, the [wowe=wE = owmes VX Tt %
. .. - Activily Properties
Create Object activity uses the token S [yt NS
label values to create the components. i o o
» Initial Inventory A & Initial Inventory B Guanty 5
tokenQty v ,l
As with the previous approach, which Sjceaatiin /O oeanat |
. token. Store X 7
worked fine, so does this. However, the o L . e rae e oE
] . ¢ :"‘ Create Components : s T 5 v
problem is that every time a new —— i
. None v *
component is added to the system, the emmeoamiam
process needs to be repeated for each 3 Sink
. L. v 2 "
component; i.e., the activities need to be &
. . . -
copied and pasted, and their properties :
. b
edited for the new component values. T
This is remedied in the next section. =

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

» Reset the model and use the Step
button to ensure the logic works

 Trital Invertory A # Initial Invertory 8

properly. After several clicks of the

Step button, the component items

should appear in both storage areas, e

as shown in the figure to the right. /q

L2

s Create Components

3 Sink

Again, verifying as you move through the modeling process is very important.

22.2 A more general approach

The general approach is based on maintaining all of the data on components in a single Global Table, as
shown in the figure below. This way, when a new component is added to the model, only a row with the
pertinent component information must be added to the table. No changes need to be made to the Process

Flow logic and data.

4y Model [T Componentetarenza
Name CompType ICbJ:f.i Intiny Store BalchSize
b Row 1 |Comp_A 1 [Tools FowltemBin/CompA /CompA | Moddl.parameters. [nitinv_Comp_A [StoreCompa Mogel parameters.CompBatSz_A
Raw 2 |Comp_3 2 [TooksFowtzmBin/Comps ComoE Model.parameters.Initiv_Comp 8 /StoreComoB Model.parameters. CompBatsz_B
String Number Pointer FlexScript Pointer FlexScript
Data Types

The properties stored in each column in the table are of a different data type, as noted in the figure above.

Create the data table as follows.

» Using the button in the Toolbox, create a Global Table.
» Name the table ComponentReference.
» Using the table’s Properties window, increase the number of columns to six.
In terms of rows, for now, leave the table with the default one row. The data type for each column will

be changed below, and then, as rows are added, the cells will have the data type of the row above it.

» Name the headers as shown in the figure - Nawe, CompType, Object, etc.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

» Right-click on the cell under each column and select Assign Data, then click on the following option
depending on the column.

e For Nawme, select Assign String Data. The cell only accepts string data.

e For CompType, select Assign Number Data. The cell only accepts numeric values.

e For Object, select Assign Pointer Data. The cell only accepts pointer data, i.e., a reference to an object.
e For Initlny, select Assign FlexScript Data. The cell only accepts computer code (FlexScrip?).

e For Store, select Assign Pointer Data. The cell only accepts pointer data, i.e., a reference to an object.

e For BatchSize, select Assign FlexcScript Data. The cell only accepts computer code (FlexSerip?).
» Using the table’s Properties window, increase the number of rows to two.

» Enter the data in the two rows as described below.
e For Nawse, type in the Comp_A and Comp_B.

e Tor CompType, enter 1 and 2.

e For Object,
o In the Toolbox, expand the FlowlItem Bin section so all flow items are listed in the Toolbox.
o Select the cell in the table (first row of the Object column), then use the Sampler (eyedropper) tool
to select Comp_ A from the Toolbox’s FlowlItem Bin list.
o Repeat for the second row and Comp_B.

e For Initlny, enter the command as shown below, which will be executed by FlexScript when referenced.
It will return the current value of the Model Parameter.
o Type the following in the first row: Model.parameters.Initlnv_Comp_A
o Type the following in the second row: ~ Model.parameters.Initlnv_Comp_B

o For Store,
o Select the cell in the table (first row of the S#sre column), then use the Sampler (eyedropper) tool
to select the Queue object StoreComp_A in the 3D model.
o Repeat for the second row and Component B.

e Tor BatchSize, enter the command shown below, which will be executed by FlexScript when referenced.
It will return the current value of the Model Parameter.
o Type the following in the first row: Model.parameters.CompBatSz_A
o Type the following in the second row: ~ Model.parameters.CompBatSz_B

The resulting Global Table should look like the one in the figure presented eatlier.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

The construction of the Process Flow logic is described below. It will use the data from the Global Table
created above. Basically, the logic will read information from each row in the table, i.e., read information on
each component. It will loop through each row in the table until all rows have been processed. Therefore, it
doesn’t matter how many components are in the table - the logic will process all rows.

For now, just create and populate the activities; connections will be made later in the process.

Use a Schedule Source activity and modify its properties as

. . Create initial inventories
shown in the figure to the right. o

(
» Only the name needs to be changed. i | Create initial inventories A& @
. . .. [MEnabled
Only one arrival is created at the beginning of the RS
simulation, at Time = 0. q° mn v #
[JRrepeat Schedule
1Arr|vals ﬁl ’ = Labels|[0 -‘ =
X t § = 2
I Time [Name] Quantity |

J 0 1

)
4 Select an arrival field to edit

Assign Labels to Created Tokens
e

Use an Assign Labels activity and modify its properties as | =, create nitial inventories

described below and shown in the figure to the right. ® Initializg counters
» Name the activity Initialize counters @ initalze counters 1A & @
» Use the button under Labels to create a token label. Qisosf::abe‘s = i

e Name the label NumComp. _‘La‘f:

e Type in its value as shown in the figure to the right. As Name X
the expression is typed, Flex:Sim suggests such things as : V:LI‘L:":WD ¥,
the table name. Pick the name from the list rather than Table("ComponentReference).numRons | w £5
typing it out — it is both easier and less prone to mistakes. | . name X

The method numRows determines the number of | . VZTLTleum >~

rows in the specified table, i.e., how many components 0 :
need to be processed.

» Use the button under Labels to create a second token label.
e Name the label CompNum.
e Typeinits Value as 0.

The label NumComp contains the total number of components that need initial inventory to be created, the
same as the number of rows in the ComponentReference Global Table. CompNum: is the cumulative count of
how many components have been processed and the number of rows that have been processed in the table.

These are used in a later activity to control looping through the table and determine when all components have
been processed.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 227 72 AUTODESK

Use another Assign Labels activity and modify its \
@ Increment counter

properties as described below and shown in the figure .
+ Set variables

to the right.

.. . [fari /
» Name the activity Increment counter & Set variables @ | Increment counter + Set variables A dO
Assign Labels To
» Use the button under Labels to create a token token A o
label. Labels
[]
o Name the label CompNum. 1 .
A
o For the Value, select Increment Label from the | { Comphum v 2
dropdown menu. i
) o Increment Label v & &G 2
When a token passes through this activity,
- Name %
the value of the label CompNunm will increase by | Object . R
1. This counts how many components have Value
Using Global Lookup Table { Componentf, w [+ iy
been processed. & S
o Table “ComponentReference” v
» Usethe button under Labels to create a second
token label Row token.CompNum v /f
o Name the label Object. Gokmwy, | Thject i
o For the Value, select Table, then By Global Table S P
_|Store - 2
Lookup trom the dropdown menus. t valoe
Populate the selection’s properties as follows. Using Global Lookup Table (Componentf| v 4 &f #
o Table — Use the dropdown menu to select Name %
. BatchS
Global Tables, then ComponentReference. :: T — il 4
. *: Value
o Row — Type in the value or use the Using Global Lookup Table { Componentf| w % &f /'

dropdown menu by selecting Labels, the
token.CompNun.
The row in the table is the number of the component being processed.

o Column — type in “Object.”
Note that the value 3 could also be used in place of “Olject” since the object data is in the third
column of the table. However, if the layout of the table is changed, all references to the columns
would need to be changed. Using the header name allows the columns to be rearranged without
changing where they are referenced. Of course, if the header name is changed, the references to
that column will need to be updated.

The remaining three labels are defined similarly, as described below.

» Use the button under Labels to create a third token label.
o Name the label Initln.
o For the Value, select Table, then By Global Table I ookup from the dropdown menus.
Populate the selection’s properties as follows.
o Table — Use the dropdown menu to select Global Tables, then ComponentReference.
© Row — Type in the value or use the dropdown menu by selecting Labels, the zoken.CompNum.
o Column — type “Initlnv” as the header name in the table.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 228 72 AUTODESK

» Use the button under Labels to create a fourth token label.
o Name the label Store.
o For the Value, select Table, then By Global Table I ookup from the dropdown menus.
Populate the selection’s properties as follows.
o Table — Use the dropdown menu to select Global Tables, then ComponentReference.
© Row — Type in the value or use the dropdown menu by selecting Labels, the zoken.CompNum.
o Column — type ‘Store” as the header name in the table.

» Use the button under Labels to create a fourth token label.
o Name the label BazchSize.
o For the Value, select Table, then By Global Table I ookup from the dropdown menus.
Populate the selection’s properties as follows.
o Table — Use the dropdown menu to select Global Tables, then ComponentReference.
© Row — Type in the value or use the dropdown menu by selecting Labels, the zoken.CompNum.
o Column — type “BatchSize” as the header name in the table.

Use a Create Object activity and modify its properties as |#_ create Components

described below and shown in the figure to the right.

» Name the activity Create Components. * | Create Components A & @
. . . bject
> , . o _
For the Object property, type in the value soken Objeff of use H oken.Object v
the dropdown menu and select Token Label, then Object. ¥ Quantity
> For the Quantity propetty, type in the value fokenInitlny or | "k 6l o

use the dropdown menu and select Token Label, then InitIny. ©oetein Onfeaiest

> . h I . h I /é token.Store P4 /‘
or the Create In property, type in the value fken.Store or use 1@ AsonTo O nsertatFrontof
the dropdown menu and select Token Label, then Store. token item X v 2
Object Flow
. N \
Two labels are added to the created Component item. e X~/
Assign Labels to Created Objects
» Use the button under Labels to create an item label. s
Name N/
o Name the label CompType. CompType - 2 A
o For the Value, select Table, then By Global Table | value
Tooku P from the dI‘Op down menus Using Global Lookup Table { Componentf w o /'
: 5 . Name /
Populate the selection’s properties as follows. [patchsize v 2 X
o Table — Use the dropdown menu to select Global | % yaie
Tables, then ComponentReference. toloes Batchee v.#

o0 Row — Type in the value or use the dropdown menu
by selecting Labels, the token.CompNum.
o Column — type “CompType” as the header name in the table.

» Use the button under Labels to create an item label.
o Name the label BazchSize.

o For the Value, type in the foken.BatchSize or use the dropdown menu and select Token Label, then
BatchSize.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Once the initial number of items has been added to its storage location in the model, a check must be made to
see if this is the last component in the table. If so, the Process Flow logic ends; if not, the items for the next
component in the table are created. Therefore, a routing decision needs to be made, which is implemented
using a Decide activity.

» Use a Decide activity and modify its propetties as described
below and shown in the figure to the right. o All components
» Name the activity A/ components created? created?
» For the Send Token To property, select Conditional Decide ;:;J:i,:::znems oot 4¢ 0O

Conditional Decide >y & S P 4

from the value’s dropdown menu.

Condition token.CompNum == token.NumComp | v /.'
True 1 - /‘
False 2 o 4

» As shown in the figure to the right, change the Condition to
token.CompNum == token.NumComp
Note the use of the double=. This is a Comparison

Operator; ie., it compares what is on either side of the

Allw] X

symbol. A single = is an Assignment Operator that assigns

the value on the right side of the = to the variable on the left side of the =.

The True 1 and False 2 properties refer to the number of the activity’s connectors where the token
will be routed if the comparison made in the Condition is True or False. Since the activities have not
yet been connected, this will be checked later.

» Use a Sink activity to end the token flow. When a token enters this activity, it is destroyed, much like a
Sink object in 3D.
When a token enters this activity, it is destroyed, much like a Sink object in 3D.

» Arrange and connect the activities as shown in the figure to the right.

This demonstrates the two ways to connect activities. T _
Create initial inventories

The first two activities are “snapped together” to form a block of s
@ Initialize counters

activites. When two activities are brought together, they are
automatically joined.

The second and third activities are joined by a connector — the
® Increment counter

+ Set variables
* Create Components

directed line segment.

To separate the activities, click on the block of activities, then
click on the scissors icon, which separates the activities on either side
of the scissors. This is shown in the figure below; the scissors button

is highlighted in the red box. ¢ All components
“ ¥ created?

-
»» Create initial inventories

.® Initialize counters _
" ! . ¥ Sink

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 230 72 AUTODESK

Add the loop-back connector, as shown in the figure to the right.

When an activity is selected, move the cursor near the edge of the
activity box where the connection will be made. The cursor should
change from a pointer to a chain, which signifies a connection can be
started at this point.

Move the cursor to the other activity to be connected and release;
the two activities should be connected. If not, try again.

Note the 1 and 2 beside the two connectors from the Decide
activity. These are the connector numbers. Recall from a previous
step that if the condition evaluated in the Decide activity is Trxe, then
the token uses Connector 1 to travel to the next activity. 1f the
condition is considered False, then the token uses Connector 2.

Create initial inventories
@ Initialize counters

@ Increment counter
+ Set variables

*4 Create Components

~\§ ¢ All components

5. * created?
1

3 Sink

Clicking on the Decide activity icon brings up the interface shown in the figure to the left below. The
connector can be named here, e.g., “Yes.” The interface also shows the connection number and the object

at which the connection ends.

Create nival inventones

@ Initialize counters

#» Create intial inventories

@ Increment counter @ Initialize counters

+ Set variables
*5 Create Components

s .o tYes

3 Sink

e -2

@ Increment counter ® Increment counter

3 Sink

X o
Ermphery Propmstion

Tire

2 Create initial inventories R

@ Initialize counters

g1

o [’ + Set variables + Set variables =
+ . All components ¢ | eata-Gomponents + Create Components B Tz v I
2e Created? i m N ;
R i \ o, All components All components :
IR Dacce ~Fa. 2 * " created? % created? o

es

hact
“w s

Double-clicking on the connector brings up a text box, which provides another means for a connector to

be named. This is shown in the middle figure above.

The middle figure also shows the handles that are available to shape the connector.

As shown in the figure to the right above, selecting the connector label brings up some properties that
allow the text to be edited and its font, color, and size changed. In this case, the font size is reduced from

the default of 24 to 16.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Finally, put this set of logic into a visual container, as shown in
the figure to the right. This will help organize the logic segments Initial Inventory

as more are added and provide an easy means to move all

activities; i.e., all activities in a container are moved together. E, Create initial inventories

» In the Display section of the Process Flow library, select @ Initialize counters
Container, then Process, and click on the workspace.

» Select and drag the container so that it encompasses the logic ® T et o

as shown in the figure to the right. Use the handles (small + Set variables

black squares on the periphery of the container) to position *a Create Components
the object.
» Change the containet’s text box from Process to Initial
Inventory. The textbox is a separate entity and can be moved b
anywhere or removed completely by just selecting it and All components
pressing the Delete key. =Dt
Yes
2 Sink

As the model stands now, two batches of each component will be delivered at the beginning of a simulation —
one from the 3D Sources (CompA and CompB) and one from the initial inventory Process Flow. To rectify

this:
» Uncheck the Arrival at time 0 box on the Source pane of i e
each component’s Source object. The red arrow highlights | ';‘\,...0-7 .
. . ¥ "
the check box in the figure to the right. 2, bl Lo
T) Statstics 723
<) Template 57
o] Vuns =
-] Inhele P 4 |
v axtT X
CorpTyoe 1
Sechtaon ook cerarelin. Lorgtialis A
| Auroreaticnty Racat Iy 4
| Seurcs A 7
“iwdten Jeer Cpeph S
CIRE B Y i A Tirs:

_’ Tlanrd at arac

Trewe Juri ol e

Hndel-sracstsrr. Carplras A rd= Y 4
<] Dutput =7
+| Peets

=l Tripgers 2

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

» Reset and Step through the events, noting the token moving through the Process Flow and the initial
inventory for each component created when the token hits the Sink activity, as shown in the figure below.
In this case, the second component’s initial inventory was just created.

Initial Inventory

o Create initial inventories

@ Initialize counters

® Increment counter
+ Set variables

*4 Create Components

~

Name [i1
Irsterce [Teelsprecassion recedenng No
Current Acwity [Sk
Entry Tme [0.00 All components
~ “* created?
Exit Time l o.00
Labels paationghios Shared Agsets €5
7
3 Sink
NumConp 2
| | Compiium 2
Object ModtsFiovel termbnyComp Comgb
{Iritiny ®
| [Store StoreCon
" sttt
= B128, [StoreComps Compd 1303
Ozxpand Arays Z5how Parent Labais
| Visusly Trace Token Show Trace Hetory

Note the window in the center of the figure above; it shows the token’s label values as it moves through
the Process Flow. This information is available anytime for any token; to view it, double-click the token.

Also, note that it is assumed the Finishing Operator does not unpack the initial inventory. No logic is
included in the Process Flow to do that. However, the initial inventory is likely a partial batch, which the
operator unloaded before the simulation started.

=
g If you haven’t already done so, save the model. Recall that it is good practice to save often.

—gn Use the Save Model As option in the File menu to make a copy of the existing model to be further
g customized in the next section. Again, you can use any file name, but the following model is referred to as
Primer_16 in the primer.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

23 MODELING INVENTORY REORDER POLICY

‘ Chapter 23 uses Process Flow to incorporate a reorder point inventory system to manage components.

This section defines the reorder-point inventory system logic and describes in detail how to implement it using
Process Flow. However, before doing so, a few preparatory changes are made in the 3D model. Why these
changes are being made is explained as they are used in the next section.

The base model for the additions described in this chapter is Primer_15 that was saved at the end of
Chapter 22. However, a copy of that file was saved as Primer_16; thus, we begin with that file.

23.1 Changes in 3D objects for use in Process Flow

Before extending the Process Flow logic, this section describes some changes that prepare the model for adding
Process Flow logic.

23.1.1 Add storage tables

This change is for aesthetics, as a base ~ X [Fopetes =
W | Totie_Comp_A |«t2@
for the component storage areas, and 1 statietics 71
ol Template > 7

will be a place to unpack batches of

components. A table object is placed

under the objects in the component

storage area, as shown in the figure to

the right.

» Drag out a Shape object from the
Visual pane of the Library; its
default shape is a gray cylinder.

» Change its name from Shapel to
Table_CompA.

» In the Visuals pane, use the dropdown menu and select Browse... . Browse your computer to find the
supplied Resources folder and select the Worktable.skp file.

» Using the settings in the Visuals pane in the figure above, size and position the table under the unpacking
(Separator) and storage (Queue) objects.

» Repeat for the storage area for Component B by copying and pasting the current object. Then, rename it
Table_CompB, and position it under the unpacking and storage objects.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

Since component storage tables are barriers the operator needs | s aNavgstor propeties - o x
to avoid, they are added to the A* Navigator, as shown in the ["7 fehaer Ve CondtorslRiles Troger: Lams

- Surreund Den J2
figure to the right. pramie I &
> Open the A* Navigator tool from the Toolbox. s B

» In the Members section of the Setup tab, select FR Menzbers. Fats

[Ccache ratks

[A smooth Rotstions

» Use the button to select Table_Comp_A and
Table_Comp_B from the Visual Tool section, as shown in the ached Peths Uss
tigure to the right. Or, use the sampler tool (eyedropper) to

Members

Al Merbers

choose the table objects in the 3D view.

2 [FrigiTopad

. . . |Traveler Members ¥ a
Note this step would not be necessary if the added objects were [T | O @) £
: - 7
connected to an object that had already been added to the A* Progerties ———
P . . . + by Prope Settngs
Navigator. The table is just a visual object and is not connected ~[1 weaiton

; : . . . R FlexsnivodeFioor
with an A or S Connection to any other object; i.e., it has no

Ports.

oK Cancel

23.1.2 Reset storage colors

Each component’s storage will be used as a visual indicator, i.e., the storage locations will be colored black
when their reorder point is reached and remain black until the ordered batch is unpacked. Once unpacked,
the location’s color will be changed back to its basic color (Component A is purple, and Component B is
white). The change-color logic is added later, but an On Reset trigger needs to be added to the object to set
its correct color at Reset in case it is in the reorder state when a simulation ends.

» For the Queue StoreCompA, use the button in the Triggers section to add an On Reset trigger.

» Use the button to the right of the On Reset text box to select Sez Object Color.

» On the Set Object Color interface, change the Object value to current, and for the Color value, select
Color.purple.

Repeat the above for the second storage area.
» For the Queue StoreCompB, use the button in the Triggers section to add an On Reset trigger.

» Use the button to the right of the On Reset text box to select Sez Object Color.

» On the Set Object Color interface, change the Object value to current, and for the Color value, select
Color.white.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 35 72 AUTODESK

23.1.3 Create a component order item

Components arrive at the facility in batches or as an order. The order item is transient in that it is only in the
model long enough to be unpacked by the Finishing Operator. Therefore, any shape would be fine, such as a
basic box. While a box is used, it will be its own type of item and resized.

As shown in the figure to the right and

- x
described below, create a new item in the it sk et &0 ;«*” B L
Flowitem Bin, - e
» Select the Box item at the top of the list of -
flow items and press the Duplicate button = i:
just to the right of the button, which] *:4 1
makes a copy of the box object and adds it J tabels D

as the last item in the list of flow items.

| eussomancaly Reset 23 12y
=l Shape Frames

» In the Properties window, change the
0 - Bage Frame v,

name to ComponentOrder.

> Set the size and location values as shown in

the figure above and select its color as = Trgpers ?
black. -

23.1.4 Remove objects for scheduled orders

As developed eatlier, the model contains logic for generating batches of components on a schedule and
unpacking them. However, that logic within the 3D objects will be replaced by reorder-point logic that will be
developed in Process Flow.

The new process will deliver batches directly to the component’s storage table and
not a common batch queue. This change in delivery adds little work to the delivery resource but saves time on
the more critical Finishing Operator resource.

Components currently arrive in scheduled batches. As a result, the following objects will no longer be needed:

e Source for each component that generates batches on a schedule.

e Common batch Queue that holds any arriving batch and calls a Finishing Operator to move the batch to
the component’s storage area and unpack components.

e Separators for each component that converts a batch to a quantity of components.

Therefore, these objects can be removed from the model, or they could be left in with the Sources disconnected

from the Queue BazchQuene. In this case, the objects will be removed. Unnecessary objects only complicate the

model and make it harder to maintain.

» Delete the five objects described above (two Soutces, one Queue, and two Separators) by selecting them
and pressing the Delete key.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

If you’d like to keep the approach to modeling batches, save the current model under a more descriptive name
and remove all objects except those relative to the batching logic. The small “study” model can be filed with

other small models that illustrate specific concepts. Over time, these become a valuable resource for future
modeling.

23.1.5 Create a storage Group

In the Process Flow logic that will be developed soon, any use of a component in the Packing Area will trigger
the reorder point logic. Therefore, all of the component storages will be monitored as a group. A group is
considered to be any set of objects that are similar or related. In this case, the component storage areas are
similar.

As shown in the figure to the right, the Group tool allows similar objects
to be processed in a like manner. Create the Group cither via the Toolbox | i | comestorage v|@
. .1 . . . : Members
or by right-clicking on an object and adding it to a current group or adding | "7 y A AR &
it to a new group. |StoreCompA
. | StoreCompB
» In this case, use the Toolbox to create a Group.
» Change its name from Group1 to CompStorage.
» Add the two component-storage Queues, StoreCompA and
StoreCompB, by using either the Sampler tool or by using the
button and then the Selcr Objects menu.
Parent Groups
9 v || A X o

23.1.6 Add and update component properties in tables

The Process Flow logic will need a reference to the objects where the batches will be unpacked. Also, as a visual
indicator, the storage locations will be colored black when their reorder point is reached and remain black until
the ordered batch is unpacked. Once unpacked, the location’s color will be changed back to its basic color
(Component A is purple, and Component B is white). This additional information is stored in the Global Table
ComponentReference, as shown in the table below.

= Model (T]"ComponentRererence

Name ‘CompType ‘Object InitInv Store BatchSize UnpackLoc Color
Row 1 (Comp_A 1 [Tools/FlowItemBin/CompA/CompA Model.parameters.Initinv_Comp_# /StoreCompA Model.parameters.CompBatSz_A /Table_Comp_A Color.purple
Row 2 (Comp_B 2 [Tools/FlowItemBin/CompB/CompB Model.parameters.Initinv_Comp_E /StoreCompB Model.parameters.CompBatSz_B /Table_Comp_B Color.white

For the unpacking location information:

» Add a column to the Global Table ComponentReference by increasing the Columns value from 6 to 7 in the
Properties window.

» Name the column header UnpackLoc.

» Select and right-click the cells in the Unpackloc column, then select Assign Data and then Assign Pointer
Data. What is stored here is a pointer to the selected object.

»2 AUTODESK

» Select the cell in the first row, then using the Sampler tool (eyedroppet), click on the Table_Comp_A object
in the 3D view.

> Select the cell in the second row, then using the Sampler tool (eyedropper), click on the Table_Comp_B
object in the 3D view.

For the component’s color information:

> Add a column in the Global Table ComponentReference by increasing the Columns value from 7 to 8 in the
Properties window.

Name the column header Co/or.

Select and right-click the cells in the Co/or column, then select Asszgr Data, and then Assign FlexScript Data.
Select the cell in the first row, then type Color.purple.

YV V VYV

Select the cell in the first row, then type Color.white.

For reorder point and reorder time information:

The Process Flow logic will also need the value of each component’s reorder point and reorder time. These are
specified in Model Parameters Tables, but for case of reference, they will also be included in the Global
Table ComponentReference. The values will still be entered in the Model Parameters Table, but their values ate
now copied into the Global Table to facilitate their use in Process Flow.

Since the reorder point parameters are used as a
p p #5 Model [7] ComponentReference E ReOrderPoint E ReOrderTime /=Erinanv®

o
Parameters : 53| X J

lower bound for initial inventory, their names

need to be updated in that table, as shown in the

Name Value Display Units Description
tigure to the right. Initinv-Comp_A [~
. 5 . Initinv-Comp_B
» Edit the parametet’s name in the Lower Type Integer v

: : Lower Bound Model.parameters[ROPComp_A"].val g
Bound expression for both parameters in onerTeun e Y =

. Upper Bound 100
the Initlny Model Parameters Table.

v
Reference l None V4
On Set []i'..‘d @8

Add the reorder point and time properties to the Global Table ComponentReference as shown in the table below.

i Model [|"EomponentReterence

Name CompType |Object Color ROP |ROTime
Row 1 | Comp_A 1 /e ItemBin/Cor ((Comp_A Color.purple Model.parameters.ROPComp_A Model.parameters.ROTmeComp_A
Row 2 |Comp_B 2 [Tools C

Comp_B Color,white Model.parameters.ROPComp_B Model.parameters ROTmeComp_B

For the reorder times, as shown above:

> Add a column in the Global Table ComponentReference by increasing the Columns value from 8 to 9 in the
Properties window.

Name the column header ROP.

Select and right-click the cells in the ROP column, then select Asszgrn Data, and then Assign FlexScript Data.
In the first row in the new column, enter Model.parameters.ROPComp_A

YV V VYV

In the first row in the new column, enter Model.parameters.ROPComp_B

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 38 72 AUTODESK

For reorder time, as shown above:

> Add a column in the Global Table ComponentReference by increasing the Columns value from 9 to 70 in the
Properties window.

» Name the column header ROTie.

» Select and right-click the cells in the ROTzme column, then select Assign Data, and then Assign FlexScript
Data.

» In the first row in the new column, enter Model.parameters.ROTimeComp_A

» In the first row in the new column, enter Model.parameters.ROTimeComp_B

N
If you haven’t already done so, save the model. Recall that it is good practice to save often.

Note:

Model Primer_16 is an incomplete model because the logic that replenishes components has been removed.
Therefore, the only components available to the Packing Area are those in the initial inventory. The component
replenishment logic is added back in the next section. However, this model is a good illustration of what
happens when a system backs up — the packing spur conveyor gets full, the loop conveyor gets full, the Finishing
Machines get blocked, and incoming containers are redirected since there is no space for incoming containers
in the container storage area.

23.2 Implementing reorder-point inventory logic using Process Flow

The basic logic for a reorder-point inventory system is shown in the figure below. The logic is contained in
three sections, as denoted by the boxes in the figure below. The logic is triggered each time a component is
used in the Packing Area to fill a container. At that point, the component’s inventory level is checked. No
action is taken if the inventory level is not at the reorder point. However, if the inventory level equals the
reorder point, the reorder quantity is ordered. There is a delay until the order is fulfilled; then, the inventory
level is increased by the number of items in the reorder quantity. Orders arrive in batches, and the Finishing

Operator unpacks the orders; i.e., a batch is converted into individual components.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 35 72 AUTODESK

A component
leaves its storage
for use in Packing

Check inventory level |

Is th

inventory

level at the
Reorder

Point?

v w

Place an order. Do nothing

Wait for batch to be delivered.
Unload batch (Operator).
Increase inventory level.

This logic is now implemented in FlexSim via Process Flow in three sections:
1. Check Inventory Level. The logic is initiated whenever a component leaves its store, i.e., the Source activity

“listens” to the storage areas and generates a token whenever an item leaves a storage queue. Subsequently,
the logic determines which component type the item is and gets its reorder point value and the current
contents of its storage area. It then checks to see if the current content of the storage area is equal to the
type’s reorder point.
2. Do Not Reorder. If the current content of the storage area is not equal to the type’s reorder point, nothing
is done, and the token is destroyed.
3. Reorder. If the current content of the storage area is equal to the type’s reorder point, then the following
actions are taken.
e Set the color of the storage area to black, indicating the component is being reordered.
e Delay the token for the reorder time.
e After the delay:
o Create a batch item at the component’s storage table.
o Call a Finishing Operator to come to the storage area to unpack the batch.
e The Finishing Operator unpacks the batch, and the component’s storage area is increased.

e Once all items are unpacked, the batch item is destroyed, the storage area’s color is changed from black
to its color, and the Finishing Operator is released to do other work.

The base model for the additions described in the remainder of this chapter is Primer_16 that was
saved at the end of Section 23.1. However, a copy of that file was saved as Primer_17; thus, we begin
with that file.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

23.2.1 “Check inventory level” logic

The first set of logic involves three activities: an Event-Triggered Source activity in the Token Creation section

of the Library, an Assign Labels activity in the Basic section, and a Decide activity in the Basic section.

» Drag out these three activities onto the Process Flow workspace named Reordering.

Event-triggered Source

This activity is used to “listen” in the 3D model for On Exit events that occur in any of the Queues included

in the Group named ComponentStorage. It also collects information on the leaving component (flow item) and

the storage area (Queue object) from which it is leaving.

This is implemented as described below and as shown in
the figure to the right.

» Name the activity Component leaves storage quene.

» The Object propetty is set by selecting Group from
the drop-down menu and then CompStorage. The
Object here is the Queue that the component just
left.

FlexSim writes the command
Group(“CompStorage”) that obtains the property’s

value.

» The Event property is OnExit, which is selected from
its drop-down menu.

» In the Label Assignment / Match Value section
e In the cell where the row is Exiéting Item and the
column is Label Name or Value, type item.
e In that same row in the Operation column, select
assign from the dropdown menu.

Component leaves
* storage queue

‘ 2 { Component leaves storage queue

A & @

ﬂ Enabled

| Object
Group("CompStorage®)

3 Event

On Exit

'Label Assignment / Match Value

vM/'
.

| |Event Data Label Name or Value Operation |
p

Exiting Item [item Iassign
Output Port

I [Jwill override Return Value

| Assign Event Object To
| token.Store

Token Name

This assigns a reference to the component (flow item) that is leaving its storage area in the token’s label

named Component.

» In the Assign Event Object To textbox, type foken.Store.

This assigns a reference to the storage location from where a component leaves to the token’s label named

Stoe.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Assign Labels
The next activity, Assign Labels, is used to obtain information from the 3D model that is needed for the reorder

logic. Information is obtained about the item (component) exiting storage and about the storage object (Queue)
where the item exited. The information is stored as labels on the token that was just created in the activity
above (the Event-Triggered Source). Any reference to the component is via the token label token.item;
similarly, reference to the store where the component just exited is through zoken.Store.

The first part of the Process Flow logic tests if its inventory level is at the reorder point after the component
exits the storage. If it is not, which happens most of the time, nothing else is done, and no additional
information is needed. Therefore, only the information needed to conduct the test is obtained now. If the
inventory level is at the reorder point, then additional information will be gathered. Of course, there is nothing
wrong with collecting all the information needed in the Process Flow at this point.

The figure below shows the properties of the Asszgn Labels activity on the right and its test and verification to
the left. The figure on the left shows the first container being packed after a resupply. The robot has selected a
Component A for packing. The statistics for the current content at each storage show 11 for Component A
(the resupply value minus the one selected by the robot) and 30 for Component B, its resupply value. The
interface in the middle of the figure shows the data on the first token; its label value for Contents is 71.

Component leaves.
 storage queue
Check for reorder = Breathe
@ Assign Labels
” 0 < | @[assign Labels Ad @
- Assign Labels To
Name id:2 FC B s o
Instance Tools/ProcessFlow/Reordering |33 |iobas
“ Current Activity | Contents =ROP? \“ [dm
Name
Entry Time 2.47
i \ CompType >/ %
Exit Time | G
Labels Relationships Shared Assets token.item.CompType >SS/
7 Name
‘ ROP - 2 X
Store [StoreCompA & vaice
item /Robot_1/CompA1 Table("ComponentReference).executeCell(l| v &5 #
CompType 1 E—
e H Contents - 2 X
Contents 11 g
‘ Value
token.Store.subnodes.length =V 4
[CJExpand Arrays Show Parent Labels
N [visually Trace Token Show Trace History

Note the Process Flow activities are linked as a “block.” Recall that activities can either be connected by a
directed-line connector or by “snapping” the activities together to form a block. The choice between using the
different link methods is made chiefly for readability and clarity.

» Add the Breathe activity between the Source and Assign Labels activities, as shown in the figure above.
The Breathe activity delays the token for 0.0 time units to ensure the storage’s content statistic has been
updated before using it in the next activity. The Breathe activity is often used to ensure things are
happening when needed. In this case, it was noticed that the content statistic had not been updated with
the on-exit event before it was needed in a label definition. At this time, no more needs to be said about
this activity.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 242 #2 AUTODESK

The following describes defining the labels on the Assigrn Labels | assign Labels
activity. Each label is added by pressing the button. All of the || @] assign Labels A & @
labels are shown in the figure to the right. Names are typed in, fosniaesto
;) token - 2
and values can be typed in directly, or they can be entered, at least || abeis
partially, by using the dropdown menu. | :’
3 ame N
‘ CompType v /’ o
> CompType’s Value is obtained from the expression ¥ Value
f token.item.CompType v b ®
o S 4
token.item.CompType
. A . Name %
which first references the item (component) leaving storage | [rop - 2
(token.item) and then the value is stored in the item’s label | $9ucts
Table("ComponentReference”).executeCell(l| v & /"
named CompType. —
|Contents v 2 £
 value
| | token.Store.subnodes.length v & /
g

» ROP’s Value is obtained from the expression
Table(“ComponentReference”).executeCell(token.CompType, “ROP”)

It executes the code statement in the Global Table ComponentReference’s cell. The cell is defined by the
row, which is the value of the token label CompType, and the column named “ROP” in the table.

» Contents’s Value is obtained from the expression
token.Store.subnodes.length

which provides the value of the current contents of the object (subnodes.length) that is stored in the
token label name Store.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 243 72 AUTODESK

Decide

A Decide activity decides whether the reorder point has been reached and whether an order needs to be

placed.
» As shown in the figure to the right, add a
Decide activity to the block of activities.

[+ Reordering =

» Name the aCtiVity Contents = ROP? Component leaves
storage queue
» In the Send Token To box, use the i
.. = Breathe
dropdown menu and select Conditional
Decide. @ Assign Labels
» In the Condition box, enter as shown, &, Contents = ROP?
token.Contents == token.ROP 8, [Contents =RoP? Ad@
Be sure to enter the double equal signs Yes,_|Send TokenTo
. . Conditional Decid &G P
in the statement. As noted before, = is an shibindbeoaises e
assignment operator, and == is a Condition |token.Contents == token.ROP VA
comparison operator. X Sink True 1 >/
This statement compares the values of False 2 -2
two tokens - one that contains the current o =
contents of the storage object and the Rank
y . |1 |a v z =
other the component’s reorder point. ' '
If the two values are equal, the
statement is True, and the token is routed out of Branch 1 of the activity. If the values are not equal, the
statement is False, and the token is routed out of Branch 2.
» As shown in the figure to the right, snap the |&VResrdemng" v
activities in the order shown.
B L
D | % Component.leaves Group: CompStorage
. . . storage queue
» Drag our two Sznk activities. iy
) = Breathe
< [| L |
» Connect the block of activities to the Sznk ' @ Assign Labels

on the left, which becomes Branch 1. Then,
connect the block of activities to the Sk
on the right, which becomes Branch 2.

It is important to connect the branches
in this order because if the Decide activity’s
conditional statement is true, the token will
exit the activity through the left branch,
Branch 1.

0 #, Contents = ROP?

| | i] u

No

» Double-click each branch connector and label them Yes and No, as shown in the figure.

The Sink on the left will be replaced in the next section with the reordering logic. However, the current

configuration is used to test the logic to ensure it is working propetly before adding more activities.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Note in the figure above that the highlighted activity block or individual boxes in Process Flow can be resized
to make the text more readable. Just drag the handles (small black squares) on the shape's perimeter to resize
in that direction.

Text

Use the Text activity in the Display section of the Activity Library to label the parts of the logic as shown in
the figure below.

» Drag out three Text activities and type in the text; resize and reformat as desired.

Component leaves
5 storage queue

= Breathe
Check for reorder
@ Assign Labels

&, Contents = ROP?

Reorder Yes No No order

N
If you haven’t already done so, save the model. Recall that it is good practice to save often.

23.2.2 “Reorder” logic

If a component’s inventory level is at its reorder point, then:

e Additional information about the component is needed, such as order quantity, order time, etc.

e The storage area is colored black to indicate an order has been placed

e A delay is incurred that represents the order replacement time

e At the end of the order delay, an order is created and delivered to the storage table

e The Finishing Operator is called to the storage area

e The Finishing Operator loads, moves, and unloads each component in the order to its storage location

e When all components are unloaded, the Finishing Operator is freed to perform other tasks, and the color
of the storage object is set back to its original color

The logic below implements this process. The additional information needed in the logic is obtained through
an Assign Labels activity.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Assign Labels e
Create the token labels shown in the figure to the right.

Each label is added by pressing the button. Names
are typed in and values can be typed in directly, or they

Companent kaaves
" slorage gueus

can be entered, at least partially, by using the dropdown

Check for reorder ~ Braathe
menu. & Assign Latek
A Cundiests = ROP?
» CompObject’s Value is obtained from a powerful R / \' N e
expression that searches the Global Table ; o

. . . B 4ssion Labels
ComponentReference for specific information. ,

. . AdéE
In this case, it searches the table for the 2.
component’s object, which is the component that b
will be created when an order is unpacked. K
. . Hame
To get the object, the expression finds the row .-_::W,,:c v
in the table where the value in the column named s —
Tada{ ComponentRafarance . getiauaby | » 3 .,'
CompType matches the value of the token label —
CompType. In that same row, it gets the value in | e S
the Object column and stores it in the token label Tatko{ Conparentiotor e) cetvausbyss, w () #
CompType. (token.CompType) St v X
The full expression is shown below. vaue
| sde(Comporentiafereoe) getvausty | w- 3 @
Name v
Cokar vy 2o
L vaue
1 Tadla{"CorgonentRefarance | cetyausEy . w 5 /'
['
ROTime - ? N
Yaue ;
Tadal Conpuewntfetnr e il lll » o5 @

Table(“ComponentReference”).getValueByKey(token.CompType, “Object”, CompType)
The next three labels obtain their values in a similar manner through a lookup in the Global Table
ComponentReference.
> token.BatchSize uses the expression
Table(“ComponentReference”).getValueByKey(token.CompType, “BatchSize”, CompType)
The batch size parameter is the reorder quantity.

> token.UnpackLoc uses the expression
Table(“ComponentReference”).getValueByKey(token.CompType, “UnpackLoc”, CompType)

> token.Color uses the expression

Table(“ComponentReference”).getValueByKey(token.CompType, “Color”, CompType)

> 'The last label, ROTime is obtained the same way as the ROP value defined in the first Assign Labels
activity. It uses the expression
Table(“ComponentReference”).executeCell(token.CompType, “ROTime”)
which executes the code statement in the Global Table ComponentReference’s cell in the row given by the
value of the token label CompType and column named “ROTime” in the table.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Change Visual
The Change Visual activity is used to change the color

of the component’s storage location to black to signify Yes No
the component has been reordered. It uses the token | _ O "
label Storage to reference the location. Add the activity | @ Assign Labels ‘
as shown in the figure to the right and described below. | ®* Set storage color to black 3 Sink
» Seclect the Change Visual activity from the Basic | Set storage color to black A & @
section of the Process Flow Library. ifha:ge:ju:;ect — z
» Name the activity Se storage color to black. iy | w—— O
» For the Change Visual property, using the Cdor [Color.black -
button, select the Set Object Color option, then ‘
e Set the Object property to foken.Store. =
e Set the Color property to Color.black from the drop-down menu.
Delay = No
Delay the token the length of the reorder time, as . (
described below and shown in the figure to the right. D @ Assign Labels
» Select the Delay activity from the Visual section of g ® Set storage color to black X Sink
the Process Flow Library. i -O Reorder time 1
» Name the activity Reorder time. “ol1 :
» For the Delay Time propetty, use the dropdown B9 heode e Ad@
1y property, p Delay Time
menu to select Token Label, then ROTime. token.ROTime min v
Ereare Object | # Create order
Once the order time has passed, a component order is | |
created by the Create Object activity at the component’s u "'_‘ Create order ‘ Ad @
storage table. Add the activity shown in the figure to the | | Object
right and described below. Componettords: =
» Seclect the Create Object activity from the Objects ‘?“a”ﬁty ?
section of the Process Flow Library. : — G A
» Name the activity Create order. jriooEln @Cess A : 1
) | token.UnpackLoc X v A
> For the Object property, use the dropdown menuto |8 =
select Flowitems, then ComponentOrder. S 5 B\ At ot o
» Leave the default value of 7 for Quantity. ikl S e
v Object Flow §
» For the Create At propetty, use the dropdown menu None X v 2
to select Token Label, then UnpackLoc. Assign Labels to Created Objects |
» For the Assign To propetty, type token.Order. op |

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Change Visual
The order will come into the table object on the floot, so

Set order height

it needs to be raised to table level. This activity is for

. - 5‘ Set order height ‘ Ad @
aesthetics and does not affect system performance. Add Change Visual
the aCUVlty ShOWﬂ n the ﬁgure to thC I‘lght and dCSCI’led l 4 | Set the location of an object relative to another object in X
the 3D view using coordinates
below.
. .. . Object token.Order v /0
» Sclect the Change Visual activity from the Visual ‘
. . Relative To | token.UnpacklLoc v /l
section of the Process Flow Library. ofsetx. o o
» Name the activity Sez order height. ity v
» In the Change Visual textbox, using the dropdown Offsetz |1 - 2

menu, select Sez Location to Object Location, then set the

following values

e Object to token.Order either by typing it or using the dropdown menu and selecting Labels, then
token.Order.

e Relative to token. UnpackLoc either by typing it or using the dropdown menu and selecting Labels, then
token.UnpackL oc.

o Offset Xto 0.
o OffsetYtol].
o OffsetZto .

Change Visual
Another Change Visual activity is used to change the

. . O &* Change order color
color of the order to the component’s color. Again, this *
activity is for aesthetics and does not affect system '1 s ‘Ch:_’“-‘elmde’ il Ad@
.. . ange Visual
performance. Add the activity shown in the figure to the L z
X . 4 | set Object color X
right and described below.
. .. . Object |token.Order v /,0
» Sclect the Change Visual activity from the Visual
section of the Process Flow Library. Color [token.Color - p
» Name the activity Se order color.
. . e
» In the Change Visual textbox, using the dropdown

menu, select Sez Object color, then set the following values

e Object to the token.Order either by typing it or using the dropdown menu and selecting Labels, then
token.Order.

e For the Color property, type foken.Color.

Many of the following activities involve getting a Finishing Operator to the Component Storage Area and
unpacking an order to resupply a component’s inventory. All of the operator’s tasks, such as travel, load, and
unload, are grouped into a “task sequence” so the operator is not interrupted by other tasks. If the individual
tasks are not part of a defined task sequence, then if another task arises for the operator, the operator will
perform that task. Thus, the task sequence will retain the operator in the storage area until all those tasks are
complete. Of course, if another task has preemption privileges, the sequence would be interrupted. However,
that case is not considered here.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 248 72 AUTODESK

Create Task Sequence

Create a task sequence for a Finish Operator to unpack the g create npack s

components as described below and shown in the figure to the * 4

"" Create Unpack TS ‘ Agh (7]
rlght. Task_Executer_] Dispata:ner N
- is rato N P
> Select the Create Task Sequence activity from the Task 3§ nshoperators X
. . Priority
Sequences Assets section of the Process Flow Library. 0 - 7
» Name the activity Create Unpack TS. Preemption
> 1In the Task Executer / Dispatcher textbox, using the x "°PesTe: e
. o 4 Wait for Finish State
dropdown menu, select Dispatcher then FinishOperator. 3 allocated idle =
» In the Assign To textbox, change foken.taskSequence to 3@ assignTo (O Insert at Front of |
token.UnpackTS tokien.Urpadds v
X Dispatch and Wait |
» For Apply Task Executer To, use the button to delete | assign Task Executer To 'I
the default value; this should result in the value Noze. None X A
Travel
The Travel to Object activity sends the operator to the storage [
o)) e Iravel to storage area
area; thus, add the activity described below and shown in the]
. o ,‘.’,’Travel to storage area ‘ Ad@
figure to the right.
. o Executer / Task Sequence
» Sclect the Travel To Object activity from the Task token.UnpackTs - 2
Sequences Assets section of the Process Flow Library. D:T”“S" " »
o) oken.UnpackLoc v
» Name the activity Travel to unpacking table. 4End Speed
» Set the Task Executer / Dispatcher value to token.UnpackTS. TaskExecuter DefaultEndSpeed vy 8 /)
» Set the Destination value to token.Unpackl o. AWt Ul Conplete
Once the operator is at the storage area, the components
are unpacked individually. Thus, the unpacking activities P
will be in a loop, i.e., the logic will loop through a set of . / * Create component at table
unpacking activities for each component. This is B2 Unload orger g :’fg::"cr;‘r?]‘l’;;”etn*t‘eight
e
mOdClCd in Process FIOW using the Run Sub Flow we Travel to storage area
.. e e . . -
activity. The activities in the loop are bounded by the '_':r”a]j;dt:i:;’:x:gt able
el
Start and Finish activities. The completed logic is shown @ Finish

in the figure to the right, but its construction is explained
step-by-step below.

Note that each activity is attached to the previous one, forming a block.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Run Sub Flow
The Run Sub Flow activity creates “children” tokens that loop

¥
%2 Unload order
.

through a defined set of activities. The activity defines where the

: . . e Wnboad order Ad®
looping starts, how many times the loop is executed, and | pestinaton
instructions on how the loop operates. Add the activity described | }stt . Wt
below and shown in the figure to the right. g antty
o . 1 token.BatchSze v ,‘
» Select the Run Sub Flow activity from the Sub Flow section R Tokee one ata e
of the Process Flow Libl’ary. [CJLabel Access on Parent Criy
Parent Label Access
Read [Wnte et

» Select the Start activity from the Sub Flow section of the A R e o ks

Process Flow Library and place it near and to the right of the | AssignLabes to Children
L o

Run Sub Flow activity, as shown in the figure below.

_m |]
I ,:. Start >]

/ =

%2 Unload order ~
|

» Define the Run Sub Flow activity properties as below and in the figure above.
e Name the activity Unload order.

e For Destination, use the sampler tool to select the Start activity added above. A blue line should now
connect the two activities.

e For Quantity, use the dropdown menu to select the token label named BazchSize; thus, the value should
be token.BatchSize.

e Check the box Run Tokens One at a Time
e Uncheck the box Label Access to Parent Only
e Check the box Copy Labels to Children on Create

The sub-flow activities are defined below.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Create Object
The component to be unloaded is created at the

storage table using the activity described below and

shown in the figure to the right.

» Seclect the Create Object activity from the
Objects section of the Process Flow Library
and attach it to the Start activity.

» Name the activity Create component at the table.

» Set the Object value to token.CompOlject. The
object being created is a component flow item.

» The Quantity value remains 7.

» The Create At value is token.Unpackloc. The
component is created at the storage table.

» The Assign To value is token.Component. This
provides a reference to the component that was
just created.

In the Assign Labels to Created Objects section,
create the two labels on the component item. The
labels are the container type and its batch size.

> Use the button to add a label and assign

the values as follows.
e Name the label CompType.
e The value token.CompType.
> Use the button to add a label and assign
the values as follows.
e Name the label BazchSize.
e The value foken.BatchSize.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

® Start
* Create component at table

F | "T [Create component at table

+ Object
token.CompObject
- Quantity
41
(OCreateIn (@) Create At
token.UnpackLoc

@ AssignTo () Insert at Front of
token.Component
Object Flow
None
Assign Labels to Created Objects

aF

Name

CompType
X Value

token.CompType

Name
BatchSize
i Value
token.BatchSize

»2 AUTODESK

Change Visual
Similar to what was done with the order flow item, by

@ Start
*3 Create component at table
object on the floor, so it needs to be raised to table level, | ®Set component height

default, the component order will come into the table

as shown in the figure to the right and described below. £ set component eight A d@

» Seclect the Change Visual activity from the Visual Change Visual

section of the Process Flow Library and attach it to

4 | 5et the location of an object relative to another object in X
the Create Ob] ect activity. ; the 3D view using coordinates

» Name the activity Sez component height. Object [token.Component '

» In the Change Visual textbox, using the dropdown R token Urpadiac "
menu, select Sez Location to Object 1ocation, then set the e’ '
following values Offcet VS o
o Object to token.Component either by typing it or Offetz |1 v/

using the dropdown menu and selecting Labels, an

then foken. Component.

e Relative to token. UnpackLoc either by typing it or using the dropdown menu and selecting Labels, then
token.Unpackloc. This positions the item relative to the table object.

e Offset X to 0.

e OffsetYtol.

e OffsetZto1.

Load
The Finishing Operator picks up (loads) the component, | & | oad component
which takes 0.05 minutes (3 seconds). The load time was

. > , -
defined previously as a property of the Task Executer #% | Load component A d@
object FinisingOperator_1. The activity is defined below and EXEaRe ke
)) token.UnpackTS v X
shown in the figure to the right.
o Item
» Select the Load activity from the Task Sequences token.Component v 2
section of the Process Flow Library and attach it to Station
the Change Visual activity. Item Container v 2
» Name the activity Load component. [V] Wait Until Complete
» Set the Task Executer / Dispatcher value to
token. UnpackTS.

» Set the Item value to token.Component. This is what the Task Executer loads.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

Travel

After loading the component, the Finishing Operator | = Travel to storage area

travels to the component’s storage area. In this case, it is
very neatrby. The activity is defined below and shown in v | Travel to storage area A&
the figure to the right. Executer / Task Sequence
. o token.UnpackTS v /'
» Select the Travel To Object activity from the Task e
Sequences section of the Process Flow Library and token.Store v ?
attach it to the Load activity. End Speed
» Name the activity Travel to storage area. TaskExecuter.DefaultEndSpeed v 8
» Set the Task Executer / Dispatcher value to [V] Wait Until Complete
token. UnpackTS.
» Set the Destination value to token.Store.
Unload
Once the Finishing Operator reaches the storage area, the - -
component is unloaded, which takes 0.05 minutes (3 B¢% Unload component H
seconds). The unload time was defined previously as a & ((Flosdxoninsnt A & @
property of the Task Executer object FinisingOperator_1. Executer / Task Sequence
The activity is defined below and shown in the figure to token.UnpackTs - *
the right. Item
» Select the Unload activity from the Task Sequences tok‘en.Component Y ot
section of the Process Flow Library and attach it to the Sttz zc::m.smr . —

Travel activity.
24 Wait Until Complete

» Name the activity Unload component.

» Set the Task Executer / Dispatcher value to foken.UnpackTS.

» Set the Item value to token.Component. This is what is unloaded.

» Set the Station value to foken.Store. This is where the item is unloaded.

Travel

After unloading the component, the Finishing Operator - -

returns to the location of the order object, which is at | e Travel to unpacking table

the unpacking table. The a.ctivity is defined below and 2 [Travel to unpading table A d@

shown in the figure to the right. s Tk e ‘

» Select the Travel To Object activity from the Task token.UnpackTs v 2
Sequences section of the Process Flow Library and Destination
attach it to the Unload activity. token.Unpackloc A

» Name the activity Travel to unpacking table. End Speed — .

» Set the Task Executer / Dispatcher value to TSt X PRRCEEN T
token. UnpackTS. e vos Co ":plem_

» Set the Destination value to token.Unpackloc.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 33 72 AUTODESK

Finish

» Seclect the Finish activity from the Sub Flow section of the Process Flow

Library and attach it to the Travel activity.

@ Finish

Continue the main logic stream, which is executed once all components are unpacked.

Destroy Object
The order object is no longer needed. It is removed from

the model as described below and in the figure to the

right.

» Seclect the Destroy Object activity from the Objects
section of the Process Flow Library.

» Name the activity Destroy order object.

» In the Object textbox, select or enter zoken.Order

Change Visual
The component’s storage area color must be returned to

its original color once the reorder has been fulfilled. This
activity is for aesthetics and does not affect system
performance. Add the activity as shown in the figure to
the right and described below.

» Sclect the Change Visual activity from the Visual

section of the Process Flow Library.
» Name the activity Sez color to normal.
» In the Change Visual textbox, using the dropdown

"= Destroy order object
('!

é K{_’_;[Destroy order object

Ad @

3 Object(s)
token.Order

Asynchronous

A\d
@ Destroy order object
#* Set color to normal

’Si Set color to normal
Change Visual

|

4 | Set Object color

Object |token.Store

Color token.Color

b4

menu, select Sez Object color, then set the following values.

e Object to the foken.Store either by typing it or using the dropdown menu and selecting Labels then

token.Store.
e For the Color property, type foken.Color.

Finish Task Sequence
This concludes all of the tasks in the task sequence. It is

concluded as described below and in the figure to the

right.

» Sclect the Finish Task Sequence activity from the
Task Sequences Assets section of the Process
Flow Library.

» Name the activity Finish Unpack TS.

» Set the Task Sequence to token.UnpackTS.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

we Finish Unpack TS

1 v’."l Finish Unpack TS

Ad @

Task Sequence
token.UnpackTs

»2 AUTODESK

Sink

The definition of the logic flow is complete, and the reorder token is destroyed.
» Use the Sznk previously used to terminate the first branch or select the Sink

I
%2}
-

-~

activity from the Basic section of the Process Flow Library.

23.2.3 “No Reorder” logic

This branch includes the activities that are executed by a token when the use of a component in the packing

area does not trigger a reorder event. The branch could be composed of just a Sink, but an arbitrary 10-

minute delay is added so the modeler can see the token route to this branch and verify the model is working

as expected. There is no effect on the operation or performance of the model.

» Drag out a Delay activity and set the Delay Time propetty to 10.
» Drag the activity to just above the Sink activity, and it should
automatically connect to above the Sznk activity, as shown in the

tigure to the right..

The final Process Flow logic should look like
the figure to the right.

» Check to be sure the branches from
“Check for Reorder” logic are still
Branch 1 to Yes and Branch 2 to No, as
shown in the figure below when the block
is selected.

° _ No order

- -
Component leaves .
Group: CompsStorace

" storage queue

= Breathe
Check for reorder- = -
@ Assign Labels

2, Co

Reorder Yes, \/

Branch numbers

No order

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

© Delay
¥ Sink
Component leaves
storage queue
Check for reorder = Breathe
& Assign Labels
&, Contents = ROP? o
Reorder Yes o__No order
@ Assign Labels o] D.elay
Set storage color to black % Sink
@ Reorder time
*a Create order
Set order height
Change order color
e Create Unpack TS
&% Travel to unpacking table
@ Start

*5 Create component at table
& Set component height
& Load component

wv Travel to storage area
Unload component

v Travel to unpacking table
%@ Destroy order object #® Finish

#* Set color to normal

e Finish Unpack TS

2 Sink

2 Unload order

»2 AUTODESK

23.3 Validation & Modification

Use the Dashboard named Components that was created earlier in the primer as a means to test that the logic

is cotrrect.

» Reset and Run the model and examine the Dashboard, as shown in the figure below.

Contents of Component Storage Over Time
w2
160
140
120
100
2
= a0
50 | \
R LY A M{\\ﬁ YN ANE A SLAS
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Simulated Time

Generally, the graph looks as expected, with cyclic inventory levels. However, each component has one peak
inventory level that is higher than expected. These are indicated by the red arrows in the figure.

After some investigation, here is what is happening. As the Finishing Operator unpacks an order, the
inventory in the storage area increases to the reorder point, and then above. If an item is withdrawn for
packing during this time interval, the reorder logic is triggered again. Of course, this would not happen in the
real system, so the logic needs to be modified. As with many things in modeling, there are various ways to
remedy this.

Upon further viewing of the model in action, it becomes apparent for safety reasons that the robot should
not be operate while the operator is unpacking components. Therefore, the robot will be stopped when order
when the operator arrives to unpack an order.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

A Custom Code activity is used to implement
this. However, that does not mean code
actually has to be written. Many tasks are
preprogrammed in the activity, as shown in the
figure to the right.

There are several options in each of the
categories: Data, Control, and Visual. The
options in the Control section are shown in
the figure since this is what is used to stop and

Custoa Code l

l Custom Code

Custom Code

Release Token

Release Batch

Send Message

Close and Open Ports
Free Operators

Basic FR

Conveyor
Warehousing

Agent Systems

AGV

Reinforcement Learning
End the Model Run
Stop Object

Resume Object

Stop Token

Data > Resume Token
start the robot. Control > Set Object State
Visual > |

Code Snippet

To stop the robot

T
$w Create Unpack TS
v Travel to unpacking table

» Select the Custom Code activity from the Basic section of

the Process Flow Library. Stop Robet
» Name the activity S7gp Robot. | Stow Rekot A & @ jroe

Custom Code i ght

» Use the button to the right of the Custom Code textbox |1

Stops an object like a fixed resource from completing an P

. operation
to select Control, then Stop Object. 2| condton [t ey
» The only property that needs to change is the Object. Use |# | obect Modelfnd(Robot_1) - 2
the sampler tool to select the Robot object in the 3D view, |3 | set [saiEsiomeo YLt
or use the dropdown menu and select Objects, then SoolD i i
5 0.00 - #
Model find(“Robot_1"). i .
» Place the activity after the Travel to unpacking table activity and e
before the Run Sub Flow activity Unload order.
To restart the robot
. . . . '
» Select the Custom Code activity from the Basic section of ~ * Restart Robot
the Process Flow Library. | Restart Robot A d @
.. Custom Code
» Name the activity Restart Robot. ‘
4 | Resumes an object that was previously stopped. The X

Resume ID should match the Stop ID that was used in the
previous Stop Object trigger.

» Use the button to the right of the Custom Code textbox

to select Control, then Resume Object. Condiioq e
. . lodel. find("Rob: v

» The only property that needs to change is the Object. Use Obiect [Model Ind(Robot. ’;
ResumeID |1 v

the sampler tool to select the Robot object in the 3D view,
or use the dropdown menu and select Odbjects, then

Model findRobot_17).
» Place the activity before the Destroy order object activity and after the Run Sub Flow activity Unload order.

»2 AUTODESK

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

The overall Reordering Process Flow should resemble the figure below.

Component leaves
storage queue

Check for reorder = Breathe
@ Assign Labels

&, Contents = ROP? o
Initial Inventory

Reorder Yes o __No order
w Create initidd inventories
@ Initialize counters
@ Assign Labels o D.elay
M Set storage color to black % Sink
@ Increment counter
= + Set variables
+ Create Coi ks
e (& Reorder time
No *a Create order
- - # Set order height
o~ ce:‘z;';onen #* Change order color
es
" Sink
: te Create Unpack TS
ww Travel to unpacking table
* Stop Robot ® Start

*5 Create component at table
o Set component height
& Load component

we 17avel to storage area

T2 Unload order

&% Unload component
Restart Robot we Travel to unpacking table
*w Destroy order object & Finish
#” Set color to normal
o Finish Unpack TS
2 Sink

Again, use the Dashboard named Components to test that the logic is correct.

» Reset and Run the model and examine the Dashboard, as shown in the figure below.

Contents of Component Storage Over Time

WIP

n
o

: w\\sgo\\f\]\\\f“N UL -

0 1000 1500 2000 2500 3000 3500 4000 4500

Simulated Time

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 58 72 AUTODESK

Now, the graph looks as expected, with cyclic inventory levels.

Also, note in the figure to the right that the robot is stopped
when the Finishing Operator is unpacking components. The red
square at the base of the robot indicates the object is stopped.

Two other means within Process Flow that help validate a model are introduced here — adding breakpoints to
activities and coloring the tokens.

Breakpoints
As shown in the figure to the right, when selected each activity

has a small gray circle to its left. If that circle is selected, it turns Reorder

red, which means it is designated as a “breakpoint.” Clicking the

circle when it is red, removes the breakpoint. @ ® Assign Labels
E

~
¢

" Set storage color to black 1| ‘

A breakpoint is basically a stopping point. When the simulation
arrives at an activity that is marked as a breakpoint, FlexSim goes

into “debug” mode, which limits some of model access and O Reoider t|n|1e

enables some debugging tools. The key point here is that the model runs until it hits a break and then stops.

When FlexSin hits a
breakpoint, control is

passed to a set of buttons,

HSaAw 8RS b oae B S Srewn o \&
v
Reorder P/ 2

as shown in the figure to

@ Assign Labels \
the right. The two buttons 2 St storape coler to black ¢
of interest here are: "
® O Reorder time \

e Step Token steps

through the model one \\\\ OCW " dL .
O) N \
activity at a time. The \\\\\\\&\\\\ ' Set order haight

current activity is

denoted by the yellow [|PI StepAny # Step Token) Continue @ Stop Smulation Ck
arrow to the left of the > Ceats Unpa

e Travd to unpadking table
activity, which is ! Stop Rakot

highlighted by the red
circle in the figure to the right.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 59 #2 AUTODESK

e Continue lets the model run as usual, but it will stop at the next breakpoint activity.

To stop checking using a breakpoint:
e Select the activity
e (Click on the red circle, which will turn back to gray
e Press the Continue button

The control panel disappears and the model runs as normal.

Colored tokens

Using color is a great way to validate a model, such as in the 3D view, changing an object’s color based on its
state. In Process Flow, by default the tokens are all green; therefore it is difficult to know what type it is, other
than double-clicking the token to display its label values.

In this example, the token color for the reorder Process Flow represents the type of token.

» Click anywhere on the Process Flow workspace, then T IOREINCRSEI oM e pteIN Fopves i
select the More Properties button in the Properties =% @ é
window.

Varobies VSuaation Labels Trggers

» On the resulting window, click the Visualization tab, Dsplay Parent/chid Lnks [Wihen Selectig token: all generations -
which is shown in the figure to the right. Oisplay Inter-Activly Lnks |When seiscing actwty bock m--

» In the Token Colors pane of the window, check the ™= oo [- ~ >
Define Legend box. .-

» Also in theToken Colors pane, select the Label -

= X/t 8 <] Define Legend

dropdown menu and select CompType. This label

~

contains a numeric reference to the type of component.
> Use the button to add two color bars which will be the s .

color of the token based on the value of CompType (in e s INEE
this case, 1 or 2). S I
Note the first bar is the default and is colored black. A Wi
token will be black if, in this case, a CompType value is :‘ -
greater than 2. As component types are added to a model, o W

their token colors must be updated here. e

» Click on the color bar that has a value of 1 and use the Ok N & ooty = SR

dropdown menu to display the color palette as shown in the figure to the right. Select purple.

» Click on the color bar that has a value of 2 and use the dropdown menu to display the color palette as
shown in the figure to the right. Select white.

Now, in Process Flow, tokens for Component A (CompType = 1) will be purple and tokens for Component

B (CompType = 2) will be white.

]
If you haven’t already done so, save the model. Recall that it is good practice to save often.

—gn Use the Save Model As option in the File menu to make a copy of the existing model to be further
customized in the next section. Again, you can use any file name, but the next model is referred to
as Primer_18 in the primer.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

24 USE OF RACKS TO STORE CONTAINERS IN THE WAREHOUSE

Chapter 24 introduces the Rack object and describes its use to store packed containers in the

warehouse.

The model’s next extension is adding a small Warehousing Area that follows the Packing operation. That is,
containers that have been finished and packed with components flow to racks in a warehouse, where they are
stored until they are used to fulfill demand. This introduces Flex:Siz’s Warehousing Module. For now, packed
containers flow down a conveyor after packing and go directly into a storage rack in the warehouse. In a later
chapter, the containers will travel to the warehouse using an AGV (automated guided vehicle).

FlexSim provides a robust set of tools for modeling warehouse operations. These tools can represent complex
aspects of warehousing and storage systems. Since this is a primer, the warehousing capabilities are only
introduced through a simple example. However, this should provide the basic concepts and a foundation for
exploring the topic further. In any case, as has been stressed throughout the primer, it is always best to start
simple, have a clear definition of the problem being addressed, and have well-defined operational objective(s)
for developing the simulation model.

Objects are accessed through the Warehousing section of the Object Library. The most commonly used
object, and the only one discussed in this primer, is the Standard Rack object, hereafter referred to as a Rack.
There are other types of racks in the Library for handling specific systems, e.g., Gravity Flow, Push Back, and
Drive In racks. While these differ from the Standard Rack, they are structured similarly.

The first time a Watrchouse object is dragged into a model, a Storage System object is added to the Toolbox.
Most of the properties in the Storage System are for use in more advanced models, such as custom addressing

schemes, special visualization, and triggers.

The base model for the additions described in this chapter is Primer_17 that was saved at the end of
Chapter 22. However, a copy of that file was saved as Primer_18; thus, we begin with that file.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

» Select the Standard Rack from the submenu in the Warehousing | -i conveyors
section of the object library, as shown in the figure to the right. ST COey
Curved Conveyor
) Join Conveyors 7
» Drag out the object into the model near the end of the conveyor from T b T
. £ Staton
packmg. ;: Photo Eye
@ Motor
Merge Controler
| Warehousing
¥ Rackc (= (
Fioor Storage k |
%, Pant Sot Labek 7 ’
Standard
-1 Visual
A text \\\\\!
A Biboard Hz‘
Plane 2 ,
Gravity Flow
Side -
B Shape ‘
| Wals &b‘
Light 1 >
- Push Back
) AGV -
-} A* Navigation lu{‘]
=) Fluid WI [
B Ronms ¥ Crn.e‘i
The Properties window for the Rack object is shown in the figure to the [popertes %
right. It has four unique panes: Storage Object, Storage Options, Address |8 [Tre_1 i~ t2 @
Mapping, and Flow. These are in addition to the standard panes, such as | =2==8 ol
+] Template v 2
Statistics, Visuals, Triggers, etc. 4] Visuals 2
4 Labels 2 2
. -] Storage Object & ?
This primer just uses the properties in the Storage Object pane. All of it Dimercons
the defaults are used except for Edit Dimensions, which is described | yomizmton [rack >
below. However, the other properties are briefly defined here. The | sotassgnmentstrateqy
. . . . First Slot with Space vy & & /0
following refers to “slots” in the rack; this term is defined below. 5
ot Stacking Order
o Visualization provides a dropdown menu of options on how the |[** ¥ 7 v~z ¥
. . -| Storage Options &y ?
RaCk IOOkS mn the 3D View. [(IMark Slots with Outbound Items
o Slot Assignment Strategy provides a dropdown menu of options for | Ovrtusize items
determining where an incoming item is stored. The default is Firsz Slpr | [Iexend columns
with 5])&256. Shelf Tilt Amount 0.00 o
. Pick/Place Y Offset 0.00 m
o Slot Stacking Order defines how incoming items are stacked within |2 address Mapping =2
an individual slot. The default is to fill the rack's hotizontal (x) | addressscheme |none v
direction first, then the depth (y-direction), and finally stacking in the | I Start G Stride R
ay + v
z-direction. Level l 1 ‘ ‘ 1 l = »
st [1 | [1 | [x v
-] Flow o ?
[[Juse as Fixed Resource
+] Ports 2
) Triggers ?
qh v

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

In the screenshot to the right, the default Rack object is
in the background, and the customized Rack used in this
model is in the foreground. Among other things, the
Rack will be resized for the primer model. Also, note in
the figure that the Rack stores all three types of
containers; in the primer example, each type will be

stored on its own rack.

The minimum rack size for DPI is

Minimum dimensions

shown in the figure to the right. It also
. .) A0m
shows the object’s dimensions and a few /_//

key rack properties.

’ 05m
Level 3 (second shelf)

#=—— Lecvel 2 (first shelf)
#=—= Lecvel 1 (floor, no storage)

1.25
Bays are sections of a Rack that
represent storage areas along the
horizontal axis. Bays are subdivided
horizontally into Slots. Bays also have

Levels, which are storage areas in the pBay®

vertical dimension. Each bay/slot/level
combination is referred to as a Cell. Each cell may be considered either storable or not. In this case, a Rack
has two bays, each with four slots, and there are three levels, but the lower level is not storable.

Recall that each container is a 0.5-meter cube and assume DPL wants to store containers only one unit deep
on the rack. Therefore, the minimum width of the Rack in the x-direction is 4.0 meters (0.5 meters/container
* 4 slots (container)/bay * 2 bays/Rack). The minimum depth in the y-direction is 0.5 meters ((0.5
meters/container * 1 container deep). The minimum height in the z-direction is 1.5 meters (3 levels * 0.5
meters/level); however, no containers will be stored on the bottom level. If the lower level is only 0.25 meters
high, then the minimum rack height is 1.25 meters, as shown in the figure above. However, these calculations

assume no space between containers or between the containers and shelves, which would make handling
difficult. Thus, additional space will be added later.

The capacity of a rack is the product of the number of items stored in the x, y, and z directions. In this case,
the rack’s capacity is 16 (8¥1*2).

The Edst Dimensions button in the Storage Object pane defines information on a rack’s bays, slots, and levels.
The number of bays and bay width automatically set the rack’s size in the x-direction (width), and the number
of levels determines the object’s size in the z-direction (height). The size in the y-direction (depth) is set by the
y-value in the Vzsuals pane, and it determines how many items deep the containers can be stored.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

The Edst Dimenstons button in the Storage Object pane opens the interface shown in the left part of the figure
below. The screenshot on the right below shows the final object with dimensions.

‘ 0.6m
Level 3 (0.75 m high)

#r Lecvel 2 (0.75 m high)
#== Level1(0.25 m high,
no storage)

Selected: Al Eays All Levels All Skts

v oft Parsoes nfiwses ok e Eap

4 |
st 'wedh

n [n Tum v vl ek

The following steps customize the Standard Rack to the Type_1 object used in this example.
» Rename the rack object Type_1.
» Using the dropdown menu in the Visuals pane, set the object’s color to red.

The settings for the Edét Dimensions interface are shown
in the figure to the right and explained below.
> As shown in the figure, update the Rack properties
for Type_1.
e Set the Number of Bays to 2.
e Sect the Bay Width to 2.25. The additional 0.25
meters of space above the minimum provides

space in the bay so the containers are not directly

next to each other
e Sect the Number of Levels to 3.

e Sect the Level Height to 0.5. This will make each
level 0.5 high, but the value will be adjusted later.

Selected: All Bays All Levels All Slots

o Set the SlOtS Pel" Ba_y to 4 Number of Bays Number of Levels Slots Per Bay
e Set the Slot Width to 0.56. Again, the additional | |E JE | EEees
. . . Bay Width Level Height Slot Width
0.06 meters (about 2.34 inches) will provide |[22 Im | | [o0s8 |m [v slotPadding

space between the stored containers.

» In the Visuals pane, the size properties should be x = 4.5, y = 0.6, and g = 71.5. The x and g values are set
automatically based on the entries in the Edit Dimensions interface. The y value is set manually and is
based on how many items deep the rack will contain. In this case, containers will be stored only one deep
so the depth is 0.6 meters, which provides 0.1 meters (about 3.9 inches) additional space.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

In this case, the bottom level is not storable and is only 0.25 meters high. Each cell can be customized by
selecting one or more cells in the diagram on the Edst Dimensions interface to highlight them. While
highlighted the Slot Width and/or Level Height propetties can be changed.

» Select all slots on the bottom row/level and set Level Height to 0.25.

» Also, uncheck the Storage Slots box since the lower level is not for storage; it is just to keep the items off
the floor. Of course, no containers would be stored there anyway since a container’s height exceeds the
height of the cells in that level.

» Select the top two levels and set the Level Height to 0.75.

The loaded rack is shown in the figure
to the right in terms of the top and side

views. Note the spacing between a :: 3 :: :: a

containers and between the container

and the next level.

Of course, each rack will hold
only one type of container. That will
be handled via routing logic, which
will be added later. This rack will be
the template for the others.

Sl

Items entering a rack are assigned a slot. The assignment is made before the item is moved from the input
object. If no space is available in the rack, the item waits in the input object.

The slot assignment method used in this case is the default. The method is defined on the Rack’s Storage
Object pane. The default method places containers in the rack starting at Bay 1, Slot 1, Level 2 (first storable
level). They are filled as follows: all slots in Bay 1 Level 2, then all slots in Bay 1 Level 3, then all slots in Bay 2
Level 2, and finally all slots in Bay 2 Level 3.

Rack configurations do not
need to be symmetrical;
FlexSim’s warehousing module
offers much flexibility. For
example, the rack in the figure
to the right has bays of
different sizes, varying slots
per pay, and various levels. [ettt e

o R

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION #2 AUTODESK

There are several ways to set a rack’s color. For example, a label value on each rack could be used to set its
color. Similarly, a rack’s color could be set based on the label value of an entering item where the color is set
by the Rack’s On Entry trigger. This would work in the primer case since similar items, i.e., of the same type,
are routed to the same rack. However, in this example, the color is set manually on each rack.

Set up the Warehousing Area of the model as
shown in the figure to the right and explained
below.

» Copy the Type_1 Rack object twice for the
other two types of container.
e Rename one Type_2 and set its color to
green.

e Rename one Type_3 and set its color to
blue.

» DPosition the racks on the layout and
connect the Conveyor’s Exit Transfer to
each Rack in the order of Type; i.e., Rack
Type_1 should be connected to the Exit
Transfer’s Port 1, Type_2 to Port 2, etc.

» Change the Send to Port property on the Exit
Transfer to By Expression using the drop-down

- [ExitTransfer4

I +| Template
+) Labels 2N ?
’ +] Exit Transfer 9
-] Output jv ?
Send To Port

menu. Use the default value stem.Type to transfer
components from the Conveyor to a Rack based on
the value of the container’s label named Type.

By Expression yv23 2
item.Type v /'

o v ?

+ Ports ?

Since there is no Sink in the flow, when the model runs, the racks will fill, containers will back up on the
conveyors, blocking the Packing Area and the Finishing Machines, and finally, the containers’ Queue at the
beginning of the model. At that point, all subsequent entering containers will be redirected elsewhere. The
next chapter adds the logic to represent order fulfillment, where containers are removed from the Racks to
meet demand.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 266 72 AUTODESK

Properties
Create a view of the warehousing area =) Views 2~
.. vFlnlsmgMachlnes
» Position the 3D view for a close-up view of the area, similar to the | |overal-woriing
Overall - presentation Tab
figure above. e — ©
’
> In the Views pane of the Properties menu, use the LI button to add
a view, then edit the name to Warehousing.)/ Seavch B8 g
=] View Settings ?
Working Mode v
Perspective Projection [1stPerson
Create a graph of the contents
. . = T TR =
of each rack in the warehousing o [Contents o virevnerg Ares Jut0
area, as shown in the ﬁgure to - Contents of Component Storage Over Time Q:::m ?
the right and explained below. ‘ A i L L
» Select the existing =
Dashboard named oy
= ™ * 7 X ’
Components. E * ' ne
- S ————
20 [t "
l Tl |
» Change the name to oL , At] S = ;
1777/37?2‘00/. % 50 100 150 200 250 300 350 400 450 500 550 Yoie Tips Naber
Sottinge P
Simulated Time 2] Show Lagend
» Since the existing chart on —— Tl
the dashboard isa WIP &y | | Contents of Warehousing Area ;
ILEREEN E
Type chart, copy and paste
it below the existing chart, S
which tracks the inventory x ?
& ?
level of the componentsin | Jo
the Packing Area. A new e
chart could be created, but : s 2
in this case, the copied H- >
. . - ,' %
chart is edited. —_— = ¢
Simulated Time — % Yt
1] Sorting ?
+J Advanced ?
» Rename the chart Contents
of Warehousing Area.
» For the Entrance Objects in the Options pane, select the two store objects and use the " button to

remove them. Then, use the button to add the three Racks.

» For the Ext Objects in the Options pane, select the two store objects and use the A button to remove

them. Then, use the button to add the three Racks.

» Change the Type Label from CompType to Type. The containet’s type is stored in its label named Type.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 7 72 AUTODESK

» Change the line colors in the graph to cotrespond to the Rack colors by using, as shown in the figure to
the right, the Colors pane.

e Use the colored square’s dropdown menu to select the appropriate color for the entries 1.00, 2.00, and
3.00, which are the values for the container’s Type label.

If you haven’t already done so, save the model. Recall that it is good practice to save often.

g Use the Save Model As option in the File menu to make a copy of the existing model to be further

=] customized in the next section. Again, you can use any file name, but the following model is
referred to as Primer_19 in the primer.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

25 ORDER FULFILLMENT SUBMODEL

Chapter 25 defines the order-fulfillment process and describes how to represent it in the model using
Process Flow. The process includes generating orders for containers, having an Order Picker gather
the appropriate containers, delivering a completed order to a fulfillment area, and completing orders
by updating an information system. Also, an output table is created that captures information on each
order, including the contents of each order and the time it takes to fulfill orders. Charts have also been
added that track the time it takes to fulfill an order and how many orders are waiting to be processed.

Packed containers are pulled from the Warehousing Area to meet demand. Demand for containers of different
types is based on incoming orders. The following summarizes a simple representation of the ordering and

fulfillment processes. This is followed by a description of how to model this in FlexSinz.

25.1 Definition of the order-fulfillment process

Arriving orders are placed in a queue, and an Order Picker operator fulfills each order in the order in which it
arrives. Only one order is processed at a time. However, if demand requires more than one operator, each

operator processes one order at a time.

Otders are represented as a flat receptacle that holds an order’s containers. For now, all receptacles are the
same size regardless of the order size. A model enhancement could be that orders are packed in receptacles that
depend on the order size. However, for high-level design and planning, a single size of receptacle is fine.

The Picking Operator gathers the requisite number and type of containers from their Racks in the Warehousing
Area and places them on the order receptacle. When all of the order’s containers are collected, the time to
complete an order is triangularly distributed with a minimum of 0.75 minutes, a maximum of 1.5 minutes, and
a most likely value of 1.25. This results in an average processing time of 1.17 minutes. The Picking Operator
transports completed orders to a fulfilled-orders area, which is the end of the model; i.e., what happens to
orders beyond this point is not considered in the model. The operator enters order information into a computer
before processing the next order. The information entry time is assumed to be 15 seconds (0.25 minutes).

The Otder Pickers follow the same break schedule as the Finishing Operator.

The size of each order is a random variable. It is assumed there is a request for one container in an order 10%
of the time, two containers 15% of the time, three containers 50% of the time, four containers 15% of the time,
and five containers 10% of the time. This is referred to as the order-size distribution. Based on this distribution,
an order consists of one to five containers, and the average order size is 3.0 containers.

The product mix of ordered containers is assumed to be the same as those used to produce the containers.
Recall that the product mix is defined as an Empirical Distribution named ProductMix where 30% of the
containers are Type 1 (red), 35% Type 2 (green), and 35 Type 3 (blue).

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

The time between arrivals to the Finishing Area was assumed to also be an Empirical Distribution named
TimeBetweenArrivals which was represented as a Weibull probability distribution with a maximum of 10 minutes
and a maximum of 35 minutes. The distribution results in an average time between arrivals of about 20 minutes.
It is assumed that the time between the arrival of orders is similar. Of course, this is the time between the
arrivals of containers not orders.

Therefore, if the average time between arrivals of containers is 20 minutes and there are an average of 3.0
containers per order, then the average time between orders is about 60 minutes. The distribution of the order
arrivals is assumed to be the product of the two empirical distributions or

Empirical|“TimeBetweenArrivals’] * Empirical[“OrderSize”
Of course, once the products are being produced and sold, a more representative distribution of the order-
arrival process can be determined. Still, for designing the production system, this should suffice.

As with most modeling, this aspect of the model could be modeled in various ways. A previous version of this

primer used the logic within 3D objects to represent the order-fulfillment process. However, in this version,
Process Flow is used to define the logic.

25.2 Implementation of the order-fulfillment process

The base model for the additions described in this chapter is Primer_18 that was saved at the end of
Chapter 24. However, a copy of that file was saved as Primer_19; thus, we begin with that file.

As has been the practice throughout the primer, each step in modeling the order-fulfillment process will be
described in detail; however, the following is an overview of what will be discussed.

e Represent the order size distribution as an Empirical Distribution.
e Import the Empirical Distribution from Excel.

e Create a new flowitem that represents the order. This item is used to accumulate and transport the
order’s containers.

e Create a Global Table to output info on each order, such as the order number, composition of the
order, time the order arrived into the system, and how long it took to fulfill the order.

e The Order-Fulfillment Area includes an input Queue for incoming orders, a table object for processing
the orders, a place to output the fulfilled orders (Sink), and a home location for the Order Pickers,
which is also where the operators enter order information.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 70 72 AUTODESK

e Use a Dispatcher and Operator to transport orders through the process and to move containers from
the Warehouse Area to the Order-Fulfillment Area. The Operator uses the A* Navigator to guide its
movement through the system and follows the same Time Table for breaks as the Finishing Operator.

e Add “virtual” Queues in front of each rack to help size the Racks. These objects will hold containers
from the Packing Area if their designated Rack is full.

e For use in Process Flow, define a Global Variable to increment the order number.
e Also, for use in Process Flow, set up a List to manage the inventory of containers and order fulfillment.
Containers will push information to a List when they enter a Rack and will be pulled from the List

when they are needed to fulfill an order.

e Develop the Process Flow logic that represents the order-fulfillment process. This involves the mostly
involves modeling the steps described in this list.

e Provide the capability to include initial inventory in the Racks at the beginning of a simulation. The
initial inventory amount is specified in a Model Parameters Table, and the logic is defined in Process

Flow.

e Define additional performance measures in the Performance Measures Table — the number of

orders waiting to be processed and the total time it takes to fill an order.

e Create a Dashboard of charts to track the new performance measures - the number of orders waiting

and the time to fulfill an order represented both over time and as a histogram.

Order-size distribution

The order-size distribution is modeled as an Empirical Distribution. To illustrate Flex:S7’s interface with, the
distribution is specified in an Exve/ file, which is read into the model when the model is Reset., if the Exe/ file

has changed since the last run.

» Add an Empirical Distribution
from the Statistics section of the

3 . u Orcersoe = O
Toolbox and name it OrderSize, as | pas Sampe Gererator ‘
. . Data Typs z b weighted strbuton Typs et ol v
shown in the figure to the right. sl rrbe o 2 2 e Do)
. Hows 5) Generate Samples
» Check the Weighted box. S T o]
» Using the dropdown menu, set the | |2 10 2.10
2 | 200 2.15
Distribution Type to Discrete | |5 | 30 2.5

4.00 0.15

Empirical.
> Expand the table to 5 rows.

5 500 0.10

> Enter the values in the Data and
Weight columns, as shown in the figure to the right.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION /1 72 AUTODESK

Input the order-size distribution from Faxe/

T'o have the distribution read in from Exce/:

» Create an Exve/ file in the same directory on your computer as the FlexSzz model, or copy the Excel file

named OrderSize from the primer’s Resources folder. If you create the file: A B C
. 1 Weight
e Name the file OrderSize. 7 Qlty (;glo
e As shown in the figure to the right, the spreadsheet should look like the |3 | 2 0.15
table just completed above. - j g‘ig
2 N
e Note that the first row is a header that defines what is stored in each |s 5 0.10
column. 7
» Select the Exvelicon in the upper right portion of the Empirical Distribution interface.
pp ght p
> Make the following changes to the Excel
. . -~
Interface window, as shown in the figure -
tO the rlght_ g Excel Import/Export Interface
. . i Import Export Custom
[]
Since multiple imports from Exce/ may 213 [5 — e S
; [check Al
€XZJ¢, set Imp ort Name to < Mimportiine1 Excel Workbook OrderSize.xlsx =
praﬁOm’erSize. S Excel SheetName | Sheet1
° USC the fOldCr iCOﬂ tO the rlght Of the Table Data OrderSize (Empirical Distribution) ‘ 9P | v /
Data Preview | 2
Excel Workbook property and
bI‘OWSC your computer to ﬁnd and [Juse Row Headers [Use Column Headers
select the OrderSize.xlsx file. startng Row [1 Startng Column
Total Rows 0 Total Columns _
e For Table Data, use the dropdown Al date il be mported
. . . . Data Distinction | Values Only (very fast) v deﬁ:e dl;\]yE:cg‘;(':g:b:rz
menu to select Empirical Distribution, vt dates and times ss numbers O S5
then select O ,-dgr S Z‘%,g‘ Import table on Model Reset (if Excel file has changed)
° CheCk the Use Column Hea[iers bOX. Import Tables Post Import Code [CJExecute Post Import Code
o Check the Import table on Model |© oy = Cance

Reset (if the Excel file has changed)
box.

» Since this is the only import defined for this model, any other entries in the window, such as ImportLinel in

the figure, can be deleted. To delete the entry, ensure only the one to be deleted is checked, then press the

A button above the list.

The import can be tested by changing a value in the Exve/ file, saving it, pressing the Import Tables button on

the Excel Interface window, and checking the values in the Empirical Distribution OrderSize.

Whenever a model is Reset, FlexSim checks to see if the associated Exve/ file has changed. If it has, then it will

automatically import the Exve/ data into the Flex:Sim table, in this case, the one for the Empirical Distribution

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Flowitem for ordets

As described in the introduction, the items (containers) for an order are placed on a new item as the order is

processed.

» Create the item by duplicating the Pallet item in the Flowitem Bin; i.e., select the Pallet item and press

the Duplicate button next to the & button. The Pallet and Tote are container-type flow items since they
can contain other items.

» Change the properties as shown in the figure to the

e Sect the x, 9, and z dimensions to 7.70, 1.70, and

0.05, respectively. _‘*V-""’ | _. =
e Set the x, 9, and z center locations to 0.0, 0.0, Pnftes

Pack Conterts | Palet Stading

e = ",c Base 20
right and as described below. B et -
| o /Gereraltion. 4 -,
e Name the item OrderBase. .- 7
e Using the dropdown menu, select Box to change e \
the shape from a pallet to a box. \ S
Sheomeamey s Moce Vausk
\
|

and 0.0, respectively. shaperrames

Q - Base Frame v

Triggers ?

Output table with information on orders

This table stores information on each order, which is an owT
outp%n from the model. Each time an o.rder arrn_fes, 2 [ordertum [Timein TmeToFulil [Type_1 [Type 2 [Type.3 |
row is added to the table, and the order information is 1 1.20 3.99 1 1 2
added to that row. An example is shown in the figure to | | 2 e e . ! !
he tioh 3 2.66 471 2 1 0
the right. B 4 3.53 3.44 1 0 1
» Create a 6-column, O-row Global Table named || 5 4.79 104.95 0 1 2
Orders B 6 6.33 83.34 1 0 1
) B 7 8.15 9.03 1 0 2
» Name the column headers as shown in the figure [3 9.29 20.12 1 2 1
(OrderNum, Timeln, TimeToFulfill, Type 1, Type_2,and | | 9 9.85 34.29 0 1 1
. 10 10.51 85.32 1 1 1
Type_3). Thes§ represent the or_der number, the time |H a 183 .16 . s 5
the order arrived, how long it took to fulfill the [12 13.46 28.35 1 1 0
order, and the contents of the order in terms of the | | 13 14.18 53.08 0 1 1
. 14 15.40 3.91 0 3 1
number of Type 1, 2, and 3 containers. = 5 15.05 437 5 . 5
> In the Properties window, use the dropdown menu | 16 17.02 3.32 1 0 1

for On Reset to select Delete Al Rows. This deletes
all rows in the table when the model is Reset.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 73 72 AUTODESK

Layout the Order-Fulfillment Area
The area is shown in the figure to the right and is explained

in detail below. It is located to the right of the Packing Area
with enough space for the AGV network, which is discussed
in the next chapter. For now, a single Picking Operator
should be sufficient for the Order-Fulfillment Area.

Therefore the following objects are used:

Queue for incoming orders.

Shape for a work table to process orders
Dispatcher for order pickers

Operator for order pickers

Queue for fulfilled orders

Sink for fulfilled orders

Shape/Transporter to hide Sink and Queue

Three “virtual” Queues prior to Racks

» Drag out a Queue object and name it OrderQuene.

» Update the Visuals information and set the Item

Placement to Stack Vertically, as shown in the figure to
the right.

x, 9, and g locations to 42.0, -3.0, and 0.0,
respectively.
x, 9, and g rotations to 0.0, 0.0, and 90.0,
respectively.

x, ¥, and g sizes to 1.7, 1.7, and 0.05, respectively.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Drag out a Shape object from the Visual part of the object Library.

In the Visuals pane of the object’s Properties — 7
window, use the Browse option in the dropdown menu -t LHe
.l Statistics 722
to select the Worktable.skp file in the Resources folder. S =
Update the Visuals information as shown in the ${Renom e 4 =4
figure to the right. ea s Bew
e x, 9, and g locations to 42.0, 0.0, and 0.0, == {”Z [:T“ &
respectively. v Wi
P ! , BEEE e 252
e x, 9, and g rotations to 0.0, 0.0, and 780.0, L e)
: SREEE ooy Inzarted Shage
respectively. EEEE Miwirede odibosd
® x,9,and g sizes to 1.5, 2.0, and 1.0, respectively. B T
- = ;
.- - Trogers 2
HEEE _5d
W
» Drag out a Dispatcher object from the Task Executers patt of the object Library.
» Update the Visuals information as shown in the
tigure to the right. Propertes x
) 2 | OrderPickers v h o
e x, 9, and g locations to 42.0, 3.0, and 0.0, o St 7
. | il Template R 2
respectively. e z!
e x, 9, and g rotations to 0.0, 0.0, and -180.0, | fdother ppatcher e S
: I -
respectively. v ; A
. i = S Iz
e x, 9, and g sizes to 1.0, 1.5, and 2.25, T O
respectively. wim [El25 &
More Visuske
. . . . |4 tabels 752
Recall that the Dispatcher is used since multiple Order i--------- [| Depatcher -3
Pickers may be needed in the full system design. I=ﬁ-.... =l= J;,i,,.,, -

Center-port or S connections between the Dispatcher and associated objects are not used because the

relationships will be managed through custom task sequences in Process Flow.

#2 AUTODESK

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

» Drag out an Operator object from the Task Executers part of the object Library.

» Update the Visuals information as shown in the Propetes. x
. A [Ordemer 1 -89
figure to the right. 4},&.‘., T
. = Template &
e x, 9, and g locations to 42.0, 5.5, and 0.0, t’;.... 3::
respectively | e skra sl Fave| v 2
: -2
e x, 9, and g rotations to 0.0, 0.0, and -90.0, 'J:I‘:-“' s Eoe T
respectively. ofew [ox F[ow [
2 [0 <0 E[1= Gl
e x, 9 and g sizes to 0.4, 0.58, and 1.78, T
respectively. ‘jmm ZE?
» Change the Load Time and Unload Time to 0.05 in e
2| Operator o ?
the Task Executer pane. Sl | e
Cxeaty 1
» In the Travel pane, change: Losd T
05 v A
® Max Speed to 60.0 Lrioss Tme .
0.08 win v
e Navigator to A* Navigator. ﬁ:jr;;mojy i

[IFre OnRlesourcetvalatle at Smulston Start

(S ol ———— &2
Mex Sozed s0.00 minn [FRotate
Moot [0 | mpnnfun
Decsleration E] mimin/min

o Thrasmeld)

Naagatr A" Navigaror |» %

sz nawgater for offset vave! 4|

» Make an A-connection from the Dispatcher to the
Operator.

As shown in the figure to the right, there are three
objects in the area where completed orders are taken.

This is a model boundary or the last part of the system
that the model represents; i.e., the model does not
consider what happens in the real system beyond this

point.

Only one object is required, the Sink, where orders go
once they are fulfilled.

» Drag out a Sink object.

» Name it FulfilledOrders and update the Visuals
information as shown in the figure to the right and
described below.

e x, 9, and g locations to 45.0, 21.0, and 0.0,
respectively.

e x, 9, and g rotations to 0.0, 0.0, and 90.0,
respectively.

e x,9,and g sizes to 1.0, 1.0, and 0.5, respectively.
No connections need to be made to other objects because movement of the item from the packing table to
the sink is handled by Process Flow and not the 3D objects.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 7 #2 AUTODESK

The Queue is used to temporarily replace the Sink for verification and validation. Fulfilled orders build up in
the Queue so they can be checked to be sure the orders are as expected and that the output data table
contains the correct information on the completed orders. Once confirmed that the model is working as
expected, the Sink replaces the Queue. The Queue object could be deleted or retained in case a change is
made to the model that needs to be verified.

» Drag out a Queue object.

Name it FulfilledOrdersQ.

Change the Item Placement property to Horizontal Line.

VYV V V

Update the Vzsuals information as shown below.

® x,9,and g locations to 45.0, 23.0, and 0.0, respectively.
e x,9,and g rotations to 0.0, 0.0, and 90.0, respectively.
e x,9,and g sizes to 1.5, 1.5, and 0.7, respectively.

The truck shape hides the Queue and Sink and makes the model more visually appealing. It can be added to
the model in two ways. First, use a Shape object from the Visual pane and then browse for the truck image.

Second, the method used here is to use the Truck option from the TaskExecuter object. None of the Task
Executer properties are used, just the shape.

» As shown in the figure to the right in the red citcle, use the view [o executors SR
expander in the TaskExecuter section of the Task Executer pane to |/t e

. G | ssktaecuter 2 i

drag out a Truck object. i Q ;,5
» Name it Visual_Truck. E"‘ sk e B
. . . J Clevstor

» Update the Visuals information as shown below. /& Robat .
e x,y,and g locations to 45.0, 31.5, and 0.0, respectively. 4 :;* T |
Riveye I

. . o Truck
e x,9,and g rotations to 0.0, 0.0, and 90.0, respectively. ™ Easers "
. . ~ Travel Networks

® x,9,and g sizes to 22.0, 2.6, and 4.2, respectively. 7 Netmcktiode . :

@ Trathocoema v

: Arpae k2

-~ Warchousing

Rk w
Flor Storage = fi2

&, Fant Sot Labels Pl = ! i

I Visual T

A lext Y

~Yongy

The Queues prior to the Racks in the Warehouse Area are temporary objects that help decide the capacity
of the Racks; i.e., they are “dummy” objects — they will not exist in the real system; they are only used size
the Racks.

Currently, each Rack can hold 16 containers. However, this may change as the system is being designed. The
Queues will hold items from the Packing Area if there is no space in the container’s Rack. Without the
Queues, if there is no space in a Rack, the item is held on the segment of conveyor after packing until space
is available. If that conveyor gets full, the Packing Area becomes blocked and containers will continue to back
up towards the Finishing Area.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 77 72 AUTODESK

The Queues are arranged as shown in the

v X Fropertes x

tigure to the right. The figure also shows the AR A TR il @ [Reuues 4o
. .] Statistics 27
properties for Type 1 containers. e &
| Visuials r?

S fa3diQuene \Quene, 3ds -

» Drag out a Queue object.

» Name it RackQuene_1 and change its color to
red.

» Update the Visuals information as shown in

More Viouals

the figure to the right and below. — =

e x,y,and glocations to 30.0, 4.0, and 0.0, I |

respectively. — m

e x, 9, and g sizes to 0.6, 0.6, and 0.05, : j}&n,g

respectively. g -
Frut svalatie -2
The remaining two Queues are created by | e v
copying and pasting the previous Queue. = ST .

» Copy and paste the RackQuene_1 object.
» Change its name to RackQuene_2 and change its color to green.
» Update the Visuals information as shown below.

e ylocation to 0.0.

» Copy and paste the RackQuene_1 object.
Change its name to RackQuene_3 and change its color to bixe.

A\

» Update the Visuals information as shown below.

e ylocation to 4.0.

The connections from the Conveyor from packing to the warehouse must be changed so containers are routed

to the Queues, not to the Racks.

» Disconnect the Packing Area’s Conveyor’s (PackToNex?) Exit Transfer (ExitTransferd) from the three
Racks.

» For model readability, rename the Exit Transfer Exi/Transfer_PackToW hse.

» Connect the Packing Area’s Conveyor’s (PackToNexi) Exit Transfer (ExitTransfer_PackToWhse) to the
three Queues in the following order: red (Iype_T1), green (Iype_2), and blue (Iype_3). The order is important
since the Send To Port trigger in the Exit Transfer is By Expression, which will route the container to its
Rack based on the value of its label Type.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 78 72 AUTODESK

Variable to track order number

A Global Variable will be used in the order fulfillment logic in Process Flow. The variable will store the value
of the order number, which is incremented with each arriving order. Global Variables are, as the name suggests,
a variable that can be accessed anywhere is the simulation model.

» To add a Global Variable, click the & ”
button in the Toolbox, then select | ciobalvarisbles giobalMacros
Modeling Logic, and then select Global | B Gobalvaribles

Variable from the dropdown menus.][X][8 18] varisbename [Ordertiom Type |Integer v [#

Short Description

[

As shown in the figure to the right, IitalVae [0
» Change the Variable Name to OrderNum.
» Using the picklist, set the Type to Integer.

» Set Initial Value to 0.) Apply oK Cancel

List to manage inventory
Also, for use in Process Flow, a List tool is used

to manage the inventory of containers and order

Containers

fulfillment. Containers will push information to Felds |BackOrders | Goerd

a List when they enter a Rack object, and they g

will be pulled from the List when they are § . . _. e 2 Dloyamic X

needed to fulfill an order. This logic is

Expression Field l age l Dynamic X

implemented in Process Flow. As shown in the i
. . Expression time() - pushTime v 5/0
figure to the right, create a new List and update

the following properties.

» Add a Global List by clicking on the &
button in the Toolbox, then select Global
List, and then select Iferr List from the
dropdown menus.

» Name the List Containers.

> Since all of the default fields are not needed,

use the X button on the Frelds tab to delete

. . . Q& Apply Cancel
the last two Fzelds - distance and queneSize.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION IE 72 AUTODESK

When a container enters a Rack, the item’s information
is pushed to the List Containers. This is shown in the
figure to the right and described below.

» In the Triggers pane of the Rack Type_1, use the

P button to open a list of possible triggers, and
select On Entry.

» For the On Entry trigger, use the ¥ butron to
open a list of possible actions - select Liss then select
Push To List.

» On the resulting interface, use the dropdown menu
to select Containers for the Lzst property.

» Also on the interface, use the dropdown menu to
select Labels then item. Type for the Partition ID

property.

Condition
|true

List
|Containers
Push Value
|item
Partition ID
|item.Type

This List is partitioned by the value in the item/containet’s Type label; i.e., the list is divided into sections

where information on all of the Type 1 containers are grouped together, all Type 2s, etc. Partitioning is invoked

on the Pull From List operation in Process Flow. An example of a partitioned list is shown in the figure below.

W | Contaners

Fields BackCOrders Genersl

[Cache Queres

[Keep Ematy Parttons

[unique vaives only

[Track raumber Fieid Totss

B4 Automaticaly Add Group Fields

[] Abwiarys Lamus Entres onLst

[Assign SELECT Vahaes to Puler Labels
[Lisa First SELECT Vaum a5 Quantifier

| Type |age
Fartbon [0 3 S
[Type _3fContarerl 3 14.38
Partition D: 2
IType_zfcontirer1 2 14.38
fType_2jContainer in2 2 14.98
[Typ=_2jCantanarin3 2 1498
Partiion : L
[Type_3iContarerl 1 14.98

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

#2 AUTODESK

The interface in the upper left portion of the figure above is the List tool’s General tab. It contains a button
to view the current entries on a List and to view backorders. Backorders are the objects that are waiting to pull
something from a List. In the figure, the View Entries button is pushed and the current entries in the List are
shown in the bottom left portion of the figure. Currently, the List contains one Type 1 container, three Type
2 containers, and one Type 3. The screenshot in the righthand portion of the figure above verifies this.

=
g If you haven’t already done so, save the model. Recall that it is good practice to save often.

25.3 Modeling order-fulfillment in Process Flow

The operational logic for the order- Fremmmes x

tulfillment process is modeled in Process

Create initial

Flow, as is the logic to include initial
inventory in the Racks at the beginning
of a simulation. An overview of the
processes is shown in the figure to the
right. That process is broken into four
main parts to facilitate defining and
discussing modeling the operation —
generating, completing, and fulfilling
orders and providing an initial inventory
of containers in racks.

The Process Flow activities do not need
to be arranged precisely as shown in the
figure. This arrangement is based on the
author’s desire for structure and clarity
and may vary depending on the modeler’s
preferences and style.

The following is a detailed discussion of

how to model the operation in Process Flow.

1 Generate order
% Generate orders

Increment order
number

® Detarmine order sizes set
amval ome & ordar rumbar

*a Create order base

Record order in table

$v Creats fulfill order TS

l

& Load ordes from queuve
#% Unload order at table
J Position order

T2 Genacaste an order's items

L

“* container inventory

3 Sink

T3 Create containers

4 Initial inventory

@ start

1D Assign type B euck
¥4 Creata container
® Set cortairer color

Finish

1

)
& ProcessOrder
& Load order at table
& Unlosd order at fulfilled
wv Travel to dispatcher
() Operator completa ardar
Record order fulfil time

o Finish fulfill order 75

Fulfill

order
3 Sink

Complete order

2 (subflow)

Containers

@ 5t - Gansrata an ordar’s Mems

|

&9 Set product type
! Write to Orders table
&0 Find container to fil order

o Load container at rack
& Unload contaener at table

l

B Foish - Generote o oroer's Lemes

» From the Main menu, select Process Flow and then Add a General Process Flow.

» Name the workspace OrderFulfillment.

»2 AUTODESK

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

25.3.1 Order-Fulfillment Process Part 1 - Generate Ordetrs

The first part of the Process Flow logic used to define the order-fulfillment

process is shown in the figure to the right and discussed in detail below. 1 G A d
. _ , encrate order
This part of the process generates orders and brings them into the system

at an order queue.)
4+ Generate orders

|

Increment order
number

® Datarmine onder zizes set
amva ome & osder rumbdar

%2 Create order base

Record order in table

Inter-Arrival Source 1

This activity randomly generates orders. As discussed earlier, the times $¢ Creat= fulfill order TS

between orders are generated from the product of samples from two 1

empirical probability distributions — the time between arrivals of 1

) S) & Load order from queue

containers to the Finishing Area and order size. A= .

N ; . #¢ Unload order at table
From the Token Creation pane, drag an Inter-Arrival Source M Position order
activity onto the workspace. I

As shown in the figure below T\ Ganacasts sn order's iterms

.. . L

» Name the activity Generate orders. T

You do not need to type in the long statement for the Inter-Arrival Time.
» Use the dropdown menu to select Statistical Distribution, then Empirical. This provides an interface for
entering Dzstribution and Stream.

A\

For the Distribution, use the dropdown menu to select Empirical Distribution, then TimeBetweenArrivals.
This results in Empirical(“TimeBewteenArrivals”).get(getstream(activity))

Use the Cntl-C keys to copy the expression.

After the)), type in *

After the *, use the Cntl-V keys to paste the expression.

VV VYV

In the pasted expression, change TimeBewteenArrivals to OrderSize.

Once completed, the expression should be the same as in the figure below.

% Generate c')rders ® Start

., % [Generate orders ‘ Ad @

@ [Enabled

A [Jarrival at time 0
Y Inter-Arrival Time
{ Empirical("TimeBetweenArrivals”).get(getstream(activity)) *Empirical ("OrderSize ™). get(getstream(activity)) | min v &F

)

Token Name

Y X2

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 282 72 AUTODESK

Custom Code

This activity will increment the Global Variable OrderNum each time an order arrives. As the name implies,
this variable can be accessed (read or edited) anywhere in FlexSim, i.e., in 3D objects, Process Flow, and
FlexSeript.

The Custom Code activity is a bit of a misnomer. For many operations, you do not have to write code; you

can just select from various options. In that regard, it is more of a “miscellaneous” activity. However, for this

activity, you will need to write one line of FlexScript code. I
[Increment order number ‘ A ‘i‘ 0
ustom Code

» From the Basic pane, drag a Custom Code activity onto the

4 ‘ Code Snippet

Workspace. OrderNum = OrderNum+1;

» Name the activity Increment order number.

» Usethe * to the right of the Custom Code textbox to access
the dropdown menu, then select Code Snippet.

» In the resulting textbox below Code Snippet, enter the

following as shown in the figure to the right. 7’
OrderNum = OrderNum +1; %
Assign Labels

The next activity, Assign Labels, obtains information from various sources in the model and places that
information on token labels. This activity stores three bits of information in the token’s labels — order number,
order size, and the current simulation time. The following describes defining the labels on the Assign Labels
activity.

» Name the activity Determine order size; set arrival time & order nunmber.

Each label is added by pressing the * button. All of D ted e & e s }
the labels are shown in the ﬁgure to the I‘lght. Names : @‘[Determine order size; set arrival time & order number ‘ A & 9
are typed in, and values can either be typed in directly or | assign Labels To
entered, at least partially, by using the dropdown menu. moon ZhE
I Labels
e
OrderSize’s Value is obtained from a random sample : Name X
.. T OrderS ,
from an Empirical Distribution. i : = Ve
** Value
» For Value, use the dropdown menu and select Empirical"OrderSize™).get{getstream(activity)) v E 2
Statistical Distribution, then Empirical. I Name %
» In the resulting interface, for Distrébution, use the)| meln .’
. . . L. . ** Value
dropdown menu to select Empirical Distributions, § tmeQ va
; K
then OrderSize. | Nome
P |Orderium - A
" i value
Orderfium v &2

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

Timeln’s Value is the current simulation time.

» For Value, type in time(), a FlexSiz command that gets the current time.

OrderNum'’s Value is the current order number that was just incremented in the previous activity.
» For Value, type in OrderNum, the current value of the Global Variable OrderNum.

Create Object
The Create Object activity generates orders into the model via the | Grsate ardse bas
incoming order queue. The activity is shown in the figure to the |4 ¢iciie ceder base Ad@
right and defined below. Dijact
» Select the Create Object activity from the Objects section of ;:’::v -
the Process Flow Library. | - 2
» Name the activity Create order base. ® CreateIn () Create At p
QrderQueue xSy
> For the Object property, use the dropdown menu to select |@#ssonTo O lnsert atFront of
Flowitems, then OrderBase. This is the object being created,)‘:;ct“;:e-a&e X2
the order base flow item. Nome X v 2
» Leave the default value of 7 for Quantity. Assgn Labels to Created Objects k
» For the Create In propetty, use the dropdown menu to select r.;‘;"_c S
Token Label, then OrderQuene. Orderflum v
» For the Assign To propetty, type token.OrderBase. A reference | ":‘;nﬁd"mm -
to the created item is stored in this token label. e d
i K
» Use the © button to add the three labels to the incoming "'["L: ey o
oken.OrderSize v,
order item (OrderBase). = :
For each label Value, use the dropdown menu to select Timzln > 2
Token Label, then OrderNum, OrderSize, and Timeln, = value
token, Tmeln v ?

respectively.

Custom Code
This activity adds a row to the Table Orders and populates values for two of the columns.

This is a case where the Custom Code activity is a bit of a misnomer in that you do not need to write code;
you just select an operation from a variety of options. As mentioned earlier, in many cases, the Custom Code
activity is more of a miscellaneous activity.

» From the Basic pane, drag a Custom Code activity onto the workspace.
» Name the activity Record order in table.

» Usethe ¥ to the right of the Custom Code textbox to access the dropdown menu, then select Data and
then Add Row and Data to Global Table.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

The resulting interface is shown in the figure to the right and its
updates are described below.
» For Table, use the dropdown menu to choose Orders.

» For Add/Remove Columns, use the ™ button to add:
o foken.OrderNum adds the value of the order number to the
first column in the table.
o token. Timeln/60 adds the time the order entered the
system. Since the model units are minutes, the /60

converts the value to hours.

Create Task Sequence

Create a task sequence for the order-picking operator to process

an order as described below and shown in the figure to the right.

The operator processes one order at a time, and the tasks include

moving orders from the incoming orders queue to the worktable,

moving containers from racks to the order, moving fulfilled

orders to an output sink, and entering information about the

completed order.

» Sclect the Create Task Sequence activity from the Task
Sequences Assets section of the Process Flow Library.

» Name the activity Create fulfill order TS.

» In the Task Executer / Dispatcher textbox, using the
dropdown menu, select Dispatcher then OrderPickers. The task
sequence is assigned to the Dispatcher.

Record order in table
§ l Record order in table ‘ A g (2]
Custom Code
‘- 4 | Add Row and Data to a Global Table. On each trigger X
e execution, add a new row to a Global Table and write data
» to the columns in that row.
Table | "Orders” v
=
Add/Remove o [
Columns
oo token.OrderNum - /
(¢}
g token.TimeIn/60 -2
(6]
&
e Create fulfill order TS
4 %o | Create fulfil order TS \‘ Ad@
4 Task Executer / Dispatcher
d | OrderPickers X v e
Priority
0 v 2
4 : 4
Preemption
no preempt v
| Wait for Finish State
j allocated idle v
@ Assign To (O Insert at Front of
4 token.FillOrder v 2
[] Dispatch and Wait
Assign Task Executer To
None X - /

» In the Assign To textbox, change to foken.FillOrder. This the name of the task sequence.

» For Assign Task Executer To, use the * button to delete the default value; this should result in the value

Nore.

Load

After traveling to the order queue, the Picking Operator loads an
order, which takes 0.05 minutes (3 seconds). The load time was
defined previously as a property of the Task Executer object
OrderPicker_1.

The Load activity includes traveling from the Task
Executer’s current location to where the item is located. Thus, a
separate Travel activity is not needed.

The activity is defined below and shown in the figure to the
right.

+ TOMETETS
#% Load order from queue

& ‘ =
d "‘ Load order from queue ! Ad @

Executer [Task Sequence
|| token.FillOrder v ?
3 Item

token.OrderBase v 2
Station
4 Item Container v ?

[Wait Until Complete
&n L e

» Select the Load activity from the Task Sequences section of the Process Flow Library.

» Name the activity Load order from gueue.
» Set the Executer / Task Sequence value to token.FillOrder.
» Set the Item value to token.OrderBase.

»2 AUTODESK

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

Unload
Once the Picking Operator reaches the worktable, the order 1S [{roa order ot cabie

unloaded, which takes 0.05 minutes (3 seconds). Previously, the [

:.’ Unload order at table ‘ Ad@

unload time was defined as a property of the Task Executer B e s
object OrderPicker_1. | token.Fillorder - 2
Similar to the Load activity, Unload includes traveling from | f=m
. . | token.OrderBase v /'
the Task Executer’s current location, in the case where the order o .-
was loaded, to the unload location. Thus, a separate Travel [Table Orders_1 . Wl
activity is not needed. f] Wait Until Complete

The activity is defined below and shown in the figure to the right.

Select the Unload activity from the Task Sequences section of the Process Flow Library.
Name the activity Unload order at table.

Set the Executer / Task Sequence value to token.FillOrder.

Set the Item value to token.OrderBase. This specifies the item to be unloaded.

Set the Station value to Table_Orders_1. This is where to unload the item.

YV VVVY

Change Visual

The order will come into the table object on the floor, so it needs 7 Postion e | D o P

to be raised to table level. This activity is for aesthetics and does 1 [Positon order 1A & @

not affect system performance. Add the activity as shown in the | ‘Cha"ge L

tigure to the right and described below. & | setcenteriocation [£

» Sclect the Change Visual activity from the Visual section of H Object |token.OrderBase - 2
the Process Flow Library. s XLocation [0.75 -2

» Name the activity Position order. w YLocation |-1 -2

> Usethe * button to the right of the Change Visual textbox, | e S
to select the Sez Location option, then set the following values w

e Object to token.OrderBase either by typing it or using the dropdown menu and selecting Labels then
token.OrderBase.

o Set X Location to 0.75.
e Set Y Location to -1.
o Set Z Location to 1.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Run Sub Flow

The Run Sub Flow activity creates “children” tokens that loop ' rovsrey. por 'l.
P .. . e i at—— AT T LSRR CeT
through a set of activities. The activity defines where the looping - :
. . . . Le Genereate an order’s tems _.\ o ?]
starts, how many times the loop is executed, and instructions on | Destraton
| —
how the lOOp operates. {[Start - Generate an order’s items & Vd |
{ Quantity
E token.OrderSze - 2
. .]
In this case, the sub flow generates the items for an order. 17 Run Tokens COne at a Time

[CJLsbel Access on Parent Only

o . . Parent Label Access

Add the activity described below and shown in the figure to the | Read / Wnte

right. [Z] Copy Labels to Chidren on Create
.. . Assign Labels to Chidren

» Select the Run Sub Flow activity from the Sub Flow section

of the Process Flow Library.

' 2

» Sclect the Start activity from the Sub Flow section of the Process Flow Library and place it near and to
the right of the Run Sub Flow activity, as shown in the figure below.

. = =
1. Start = =

72 Unload order —-/
1

» Name the Start activity Start — Generate an order’s items.

Define the Run Sub Flow activity properties described here and shown in the figure above.

» Name the activity Generate an order’s items.

» For Destination, use the sampler tool to select the Start activity added above. A blue line should now
connect the two activities.

» For Quantity, use the dropdown menu to select the token label named OrderSize; thus, the value should be
token.OrderSize.

» Check the box Run Tokens One at a Time

Uncheck the box Label Access to Parent Only

» Check the box Copy Labels to Children on Create

A\

N
If you haven’t already done so, save the model. Recall that it is good practice to save often.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION / 72 AUTODESK

25.3.2 Order-Fulfillment Process Part 2 - Complete Orders

The second part of the Process Flow logic used to define the order-
Complete order

fulfillment process is shown in the figure to the right and discussed in 2 (subflow)
subflow

detail below. This part deals with completing orders, i.e., gathering all the
required containers specified in the order. This part of the process defines Containers
the sub flow associated with the Run Sub Flow activity that was defined
at the end of the previous section. Also defined in that section was the @ Start - Ganeraza an order's Mems
Start activity that begins the sub flow.]

&% Set product type

Write to Orders table
& Find container to fil order

l

Load container at rack
& Unload contaener at table

1

t fwtsh - Generote an (rd's Lems
Assign Labels
. . . . t’(}) Set product type
As shown in the figure to the right and as described below, this |;
I / -
Assign Labels activity sets the product type for the order item. ’:@.\ Sitsrfd:“ e A d @
SSign Labels 10
» Name the activity Sez product type. token v P
Labels
Add the label by pressing the ™ button.
Name X
f Type -
Type’s Value is obtained from a random sample from an Value
Empirical Distribution Empirical("ProductMix”).get(getstream{activity)) v /

» For Value, use the dropdown menu and select
Statistical Distribution, then Empirical.

> In the resulting interface, for Diéstribution, use the dropdown menu to select Empirical
Distributions, then ProductMix.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 288 72 AUTODESK

Custom Code

This activity increments the number of containers in the order that is of the type determined in the previous

activity. This is another case where the Custom Code activity is used to model a miscellaneous operation, in

this case, writing to a table.

» From the Basic pane, drag an Custom Code activity onto the workspace.
» Name the activity Record order in table.

» Use the * to the right of the Custom Code textbox to access the dropdown menu, then select Data and

then Write to Global Table.

In the resulting interface, change the properties as shown in the Fr——r—r
figure to the right and described below. —
Write to Orders table 1 Ad©
» For Table, use the dropdown menu to choose Table and ||custom coce
then Orders. “ | \urite to a Global Table
» For the Row value, use the dropdown menu to select Labels, = s Orders” >
then Zoken. OrderNum. - Coken Ordertiom - p
» For Column value, use the dropdown menu to select Labels, -
Column token.Type +3 -2
then foken. Type. Edit the value by adding +3. Wi jmeeerm—— -2
This skips the first three columns in the table since they
contain the order number, the time the order arrived, and a e

b4

place to record the total time to fulfill an order. For example,

if the container’s Type value is 2, then the number of this type of container in this order is in column 5.

» For Value, use the dropdown menu to select table/row] [colummn] +1.

This increments the current value in a table cell by 1. That table cell is defined by the row and column

specified in the previous two actions.

Recall that information on each container is pushed to a List when it enters a Rack, which indicates the

container is available to fulfill an order. The List maintains information on all containers that are available to

fill orders. When a container is needed to fulfill an order, the list is searched for a match, e.g. a container is of

the same type as that requested by an order. If there is a match, its entry is “pulled” from the List, and the

entry’s information is used in the Process Flow logic. If no match is found, the Process Flow token waits in

this activity until there is a match between the order and an item in a Rack. All of this is accomplished through

the Pull from List activity.

A List is a shared activity. In this case, the List is shared between three Rack
objects and a Process Flow activity. Thus, it is referred to as a “shared resource.
In Process Flow, the Pull from List activity needs a reference to the correct List.
This is specified in the List activity named Contazners. Once the reference is made
in the Pull from List activity, a blue line denotes the connection, as shown in the
figure to the right.

l Contaﬁers |

@ Start - G-:"e'a:%‘a_n order’s itams
\

@ Set product type \\
Write to Orders table \

& Pull from List 2

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

List

Define the activity as shown in the figure to the right and as

described below.

» From the Shared Assets pane, drag a List activity onto the
workspace.

» Name the activity Containers.

» Use the dropdown menu to the right of the Lés#’s textbox to
select Global List, then Containers.

Pull from List

Containers
lContainers ‘ Ad@
[List
Tools/GlobalLists/Containers v M /

N Type
| Global
View Entries

Advanced

View Back Orders

» From the Shared Assets pane, drag a Pull from List activity onto the workspace.

Define the activity as shown in the figure to the right and as

described below.

» Name the activity Find containers to fill order.

» For List Reference, use the dropdown menu to select Lists
then Containers. This points to the List activity created above.

The reference to the item that pushed the information to the List

that is currently in a Rack is assigned to a token label through

the Assign To property.

» For Assign To, type in token.Container ot use the dropdown
menu and select Token Label then Container.

The List is partitioned, which means containers of like types are

grouped together in a partition. Thus, an entry is pulled from one

of the groups/pattitions. In this case, an entry is pulled from the

partition with the same value as the label Type.

» For Partition ID, type in token.Type ot use the dropdown
menu and select Token Label, then Type.

<l Find container to fill order
13

& ’ Find container to fill order

List Reference

Containers

Request Number
i

Require Number

@ Assign To O Insert at Front of
token.Container

Query / Object / Array
None

Partition ID
token.Type

Puller
token

[CJ All or Nothing

[CJLeave Entries On List

[Juse Max Wait Timer

[Juse Max 1dle Timer

[Jkeep Back Order On Early Release

A & @
X P

/0

N T R Y

Once a container is available in a rack to fill an order, i.e., after it has been pulled from the list, the Order Picker

travels to the container’s rack, loads it, travels to the order on the worktable, and unloads it.

Load

After traveling to the container’s rack, the Picking Operator loads
a container, which takes 0.05 minutes (3 seconds). The load time
was defined previously as a property of the Task Executer
object OrderPicker_1.

As noted earlier, the Load activity includes traveling from
the Task Executer’s current location to where the item is
located. Thus, a separate Travel activity is not needed.

The activity is defined below and shown in the figure to the
right.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

#% Load container at rack

,’,l Load container at rack

4 Executer / Task Sequence
1| token,FillOrder

Item
token.Container

Station
Item Container

Wait Until Complete

»2 AUTODESK

» Select the Load activity from the Task Sequences section of the Process Flow Library.

v

Name the activity Load container at rack.

» Set the Executer / Task Sequence value to token.Fil/Order by using the dropdown menu and selecting
Token Label then Fil/Order.

» Set the Item value to foken.Container by using the dropdown menu and selecting Token Label, then

Container.

Unload
To unload a container, the Picking Operator must travel to the
A ‘ .
worktable. Once at the worktable, the order is unloaded, which P Unload container at tabe A & @
. . . . Executer [Task Sequence
takes 0.05 minutes (3 seconds). Like the load time, the unload time | token.Filorder - 2

was defined as a property of the Task Executer object |item

OrderPicker_1. St;:en.Container v 2
1M1 fed . . on
Similar to the Load activity, Unload includes traveling from | token.orderBase .2

the Task Executetr’s current location, in the case where the |&]waituntl Complete

container was loaded, to the unload location. Thus, a separate

Travel activity is not needed.
The activity is defined below and shown in the figure to the right.

» Select the Unload activity from the Task Sequences section of the Process Flow Library.

» Name the activity Unload container at table.

» Set the Executer / Task Sequence value to token.Fil/Order by using the dropdown menu and selecting
Token Label then Fil/Order.

» Set the Item value to foken.OrderBase by using the dropdown menu and selecting Token Label then
OrderBase. This 1s what is unloaded.

» Set the Station value to token,OrderBase by using the dropdown menu and selecting Token Label, then
OrderBase. This is where the item is unloaded.

The completed sub flow is shown in the figure to the right. Again, the -
breaking up of the activities is a matter of choice for clarity. All of the ' L ik I
activities are executed sequentially, so they could be snapped together to) .
form one block, or each could be separated using a connector or some @ Siart - Generatap order's tems

combination. l \\
@ Set product type .
Write to Orders table \,

& Find container to fill order -

|

Load container at rack
& Unload container at table

|

@ Finish - Generate an order’s items

N
If you haven’t already done so, save the model. Recall that it is good practice to save often.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

25.3.3 Order-Fulfillment Process Part 3 - Fulfill Orders

The third part of the Process Flow logic used to define the order- 1

fulfillment process is shown in the figure to the right and discussed in detail | © ProcessOrder
oo Load order at table

& Unlosd order at fulfilled
we Travel to dispatcher

() Operator complets ardar

below.
This part begins after the sub flow activities are completed and all
required containers have been gathered and loaded onto the order item.
This part’s activities include the Order Picker packing the containers Record order fulhil time
and transporting them to the order-fulfillment area and updating the order f§ = Enish fulfill order 75
information in the company’s information system. Once complete, the
operator is available to work on the next order in the queue or wait until Fulfill

the next order atrives. Also at this time, the Orders Table is updated with 3 Sl order
3 Sink

the time it took to complete the order.

Delay
Delay the token and the operator since this is part of a task sequence. The includes the length of time it takes

the Picking Operator to pack the containers and complete the order. The time to do this is triangularly
distributed with minimum, maximum, and most likely times of 0.75 minutes, 1.5 minutes, and 1.25 minutes,

respectively.
The activity is defined as described below and shown in
] © ProcessOrder

the figure to the right. : & [Frocesorder AdO
» Select the Delay activity from the Visual section of |¢belay Tme

the Process Flow Library d|nangular(0. 73, 1,5, 1.25, getstream{activity)) mn v [2 ,'

: g,
1

» Name the activity Process order.

» For the Delay Time propetty, use the dropdown menu to select Statistical Distribution, then Triangular.

» In the user interface for the triangular distribution, enter the property values for Minimum, Maximum,
and Mode as 0.75, 1.5, and 1.25, respectively. The resultant Delay Time property value should be that
shown in the figure.

Load
After the containers are packed and the order is complete, the [ad order at table]
Picking Operator loads the order, which takes 0.05. The activity is |4 , i
]) F| "1 Load order at table [Ad @l
defined below and shown in the figure to the right. # Executer [Task Sequence
» Select the Load activity from the Task Sequences section of |7 foken-Filorder v/}
. 4 Item

the Process Flow Library. toloen Orderface 7
» Name the activity Load order at table. Station
» Set the Executer / Task Sequence value to token.FillOrder by el sl v

3 Wait Until Complete

using the dropdown menu and selecting Token Label then
FillOrder.

» Set the Item value to foken.Container by using the dropdown menu and selecting Token Label, then

Container.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Unload

To dispose of the ordet, i.e., unload it, the Picking Operator must [nioad order at fukibed
travel to the Sink named FulfilledOrders. Once at the Sink, the [;
)]] [o% nbad order at fulfiled A9
order is unloaded, which takes 0.05 minutes. f Exeaiter /Task Sequance he
Recall the Unload activity includes traveling to the [tokenflomde =
L Ttem
destination. token.OrderBase v !
The activity is defined below and shown in the figure to the fstason
. FulflesCrders - " L4
right. & e
.. . | Viait Untl Complete
» Select the Unload activity from the Task Sequences section ;

of the Process Flow Library.

» Name the activity Unload order at fulfilled.

» Set the Executer / Task Sequence value to token.Fil/Order by using the dropdown menu and selecting
Token Label then FillOrder.

» Set the Item value to foken.OrderBase by using the dropdown menu and selecting Token Label then
OrderBase.

» Set the Station value by using the sampler (eyedropper icon) to select the Sink FulfilledOrders in the 3D
view. The resulting property value should show FulfilledOrders.

Travel

The Travel to Object activity sends the Picking Operator to the

ks Travel to dispatcher

Dispatcher object after unloading the fulfilled order where the - — — ' o
i)] | g | Travel to dspatcher A g 0 {
operator will enter information about the completed order. B Execuiter | Task Sequence i
Add the activity as described below and shown in the figure | ‘okenmiode W
to the right. ajn‘,‘_c\w, v @2
» Seclect the Travel To Object activity from the Task |zndspeed
Sequences Assets section of the Process Flow Library. [RexnOs PN a8/

.o . Ziw i C
» Name the activity Travel to dispatcher. Hbsbhisotiichini

» Set the Executer / Task Sequence value to foken.FillOrder by using the dropdown menu and selecting
Token Label then Fil/Order.

» Set the Destination value by using the sampler (eyedropper icon) to select the Dispatcher OrderPickers in
the 3D view. The resulting property value should show OrderPickers.

Delay
Delay the token and the operator since this is part of a task sequence, the length of time it takes the Picking

Operator to enter order information into the company’s system. The time to do this is assumed to be a constant
0.25 minutes (15 seconds).

The activity is defined as described below and shown in
) & Operator complete order l
the figure to the right. { - : 1
» Select the Delay activity from the Visual section of ‘0 | Operator complete order ‘ Ad O
the Process Flow Libraty. Dea kD .
.. 0.25 min ¥
» Name the activity Operator completes order. 2

» For the Delay Time propetty, type in the value 0.25.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 293 72 AUTODESK

Custom Code

This activity records the time it took to process the completed order, which is from when it arrived until when
it was fulfilled. This is another case where the Custom Code activity is used to model a miscellaneous
operation, in this case, writing to a table.

» From the Basic pane, drag an Custom Code activity onto the workspace.

» Name the activity Record order fulfill time.

» Use the * to the right of the Custom Code textbox to access the dropdown menu, then select Data and
then Write to Global Table.

In the resulting interface, change the properties as shown in the |7 s cozer ittt tme

tigure to the right and described below. § T Fecoed ordes il thee. AdD

» For Table, use the dropdown menu to choose Global Table ||*tonce=
and then Orders. 4 irnm b s Gobsl Table *

» For Row value, use the dropdown menu to select Labels, then ke Crders -
token.OrderNum. The row number is the value of the Order Row ke Gree bhim v 2
Number. Cokmn | TewToRdN v

» For Column value, type in “TimeToFulfill,” which is the vave 020 tokenTraln -2
name of the column that is to be updated.

» For Value, type in the following expression -

time() — token.Timeln
The time to complete an order is the current simulation time, obtained by the Flex$7» command named
time(), minus the time the order arrived.

Finish Task Sequence
This activity defines the end of the task sequence for the Picking Operator to fulfill an order. After this activity,

the Picking Operator is available to do other tasks or be set to idle and await the next task.
» From the Task Sequences pane, drag a Finish Task Sequence activity onto the workspace.
» As shown in the figure to the right, for the property Task e Finish fulfil order TS

Sequence, use the dropdown menu to select Token Label, || &, |Finish fufil order TS A d @
then Fi//Order. Task Sequence
token.FillOrder v #

v

N
If you haven’t already done so, save the model. Recall that it is good practice to save often.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

25.3.4 Order-Fulfillment Process Part 4 — Initial Inventory Orders

The final part of the Process Flow logic creates an initial
inventory of containers in the Warechouse Area. The
L. . . Create initial 2ol $ouen :
activities and flow are shown in the figure to the right and ® Cekamer insentory 4§ Initial inventory
discussed in detail below.
@ Start
. . D Assign typm B race
The amount of inventory could be a random variable or T3 Create containers N Croctm coatalngs
a fixed value. In this case, a fixed value is used and is o® Set cortainer color
specified as a Model Parameter in the GeneralParameters ® Finish
table. 2 Sink

The logic is quite simple with a sub-flow activity creating
and placing the appropriate number of containers into the model at time 0. As each initial container is created,
its type is randomly assigned, its color is designated based on its type, and it is placed in the appropriate Rack.

Each initial container is empty; i.e., it contains no components. The initial containers are created only to assess

their impact on the Warehouse Area; therefore, the added detail of the container contents is not needed. Of

course, the contents could be generated when a container is created, but that added complexity is not required.

Model Parameter

The number of containers in the initial inventory is defined in a [Fmm Toe: ST

Model Parameters Table, as shown in the figure to the right and | e = (= 58
. Mare value Display Uvts Gesenpoon
explained below. T 0

. . Threshold
» Add a fourth parameter in the GeneralParameters Model | |ncorzes

Parameters Table and name it [nitContln. L S—

» Use the dropdown menu to set: Lowersnd [0 -
Joper Bound 0 v
o Type to Iﬂl‘é:gé’r Reference [ore |/

O Set [| @

o Lower Bound to 0.

o Upper Bound to 100.
» Set the current value to 5.

Thus, the initial inventory could be as many as 100 or as few as 0.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Schedule Source

The Schedule Source activity initiates the initial inventory process = s
. :] o] "Crea‘elmt.\al .
just before the start of the simulation. The activity is shown in the L Ssainetinvectory
ﬁguf@ to the right and defined below. 7+ | Create nitid container inventory i A ll 0
» Select the Schedule Source activity from the Token Creation 7 :’_.‘:n'b‘ﬂ
. . Offsat Tire
section of the Process Flow Library. 0 ain » S
» Name the activity Create initial container inventory. 4 CJRepeat Schedule
Arrivas | L ‘ = Labels | 0 =
w X Tt 3 ﬂ 7
Time Mafse | Quantity [
| ; . 2 B
@ Select an amval field to edt
+ 4 As507 Labels to Created Tokens
‘l

Run Sub Flow
As discussed before, the Run Sub Flow activity creates “children” tokens that loop through a set of activities
that are between the Start and Fznish activities that define the sub flow.

The Run Sub Flow activity defines where the looping starts, how many times the loop is executed, and

instructions on how the loop operates. In this case, the sub flow generates initial containers in racks.
» Select the Run Sub Flow activity from the Sub Flow section of the Process Flow Library.

» Sclect the Start activity from the Sub Flow section of the Process Flow Library and place it near and to
the right of the Run Sub Flow activity, as shown in the figure below.

- @ Start

L
=~Z‘. Create containers T
] , "

Define the Run Sub Flow activity properties as described below | g -
W Create coptaners &

and shown in the figure to the right.

» Name the activity Create containers. o Bt Ad @
'J Destinaton
» For Destination, use the sampler tool to select the Start star: P
activity added above. A blue line should now connect the two oy
Model.parameters, IntContiny v t ®

activities. £7]Run Tokens One at a Time

» For Quantity, use the dropdown menu to select Parameter, d :V;:’;“_I::r::”" Ocly
then GeneralParameters then [nitContlny. The result value is SRR
Model.parameters.InitContinv, which is the value of the { 7] Copy Labek: to Chidren on Create

Asgign Labels to Children

Model Parameter named In#Contlny that was defined earlier >

¥,

in this section.
» Check the box Run Tokens One at a Time
Uncheck the box Label Access to Parent Only
» Check the box Copy Labels to Children on Create

A\

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

As shown in the figure to the right, the main logic flow concludes
with a Sink activity. The remainder of this section defines the
sub-flow activities as shown in the figure to the right and defined
below.

Assign Labels
As shown in the figure to the right and as described below, this

Assign Labels activity is used to set the product type for the
container and where the container should be placed in the model,
i.e., which Rack.

» Name the activity Assign type & rack.

Add each label by pressing the * button.

Type’s Value is obtained from a random sample from an

Empirical Distribution.

» For Value, use the dropdown menu and select Statistical
Distribution, then Empirical.

Create initial
container inventory

~ @ Start
- a/ @ Assign type & rack
W Create containers W7 %5 Create container
|| - Moo, B
J* Set container color
@& Finish
2 Sink
@ Start
& Assign type & rack
i
d @‘ Assign type &rack ‘ Ag 9
Assign Labels To
token v /9
Labels
Name X
Type >/
* Value
Empirical("ProductMix”).get{getstream(activity)) v 3/0
Name %
” Rack v /'
*: Value
Values By Case v & & /'

> In the resulting interface, for Diéstribution, use the dropdown menu to select Empirical Distributions,

then ProductMix.

Rack’s Value uses the Values By Case construct since the choice of which Rack the container is created in

depends on its Type value.

» For Value, use the dropdown menu and select Values By Case.

In the resulting interface,

» For Case Function, use the dropdown menu to select Labels then token. Type.

Use the ™ button to add each of the following cases.

For each case’s value, use either (1) the dropdown menu to select Object then Model.find(“name”) where name

is the name of the appropriate rack queue, e.g. RackQuene_1 or (2) use the sampler (eyedropper) to select the

appropriate rack queue in the 3D view.

» Case 1’s Value should be Model.find(‘RackQuene 1)
» Case 2’s Value should be Model.find(‘RackQuene 2”)
» Case 3’s Value should be Model.find(‘RackQuene 3”)

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Create Object

The Create Object activity creates a container and places it in the appropriate Rack; actually, it is placed in the

Queue before each Rack, but the item will move immediately to the Rack unless the initial number of

containers exceeds its rack’s capacity. The activity is shown in the

figure to the right and defined below.

» Select the Create Object activity from the Objects section of
the Process Flow Library.

» Name the activity Create container.

» For the Object property, use the dropdown menu to select
Flowitems, then Container.

» Leave the default value of 7 for Quantity.

» For the Create In propetty, use the dropdown menu to select
Token Label, then Rack.

» Use the © button to add one label to the container item
(Container). The label’s Name is Type and its label Value is
selected from the dropdown menu by selecting Token Label,
then Type.

Change Visual
A Change Visual activity is used to change the color of the

container based on its Type value. Add the activity as shown in

the figure to the right and described below.

» Select the Change Visual activity from the Visual section of
the Process Flow Library.

» Name the activity Sez container color.

» In the Change Visual textbox, using the dropdown menu,
select Sez Obyect color, then set the following values

%3 Create container
d
q "Tg| Create container l Ag @
Object
Container - /0
Quantity
: - 2
@ CreateIn (O Create At
token.Rack A f
@ AssianTo (O Insert at Front of
token.item X v 2
Object Flow
None X v 2
Assign Labels to Created Objects
Name \
Type ¥ /' £
Value
token.Type v /'
f Set COﬂtiih;.' color
;.’BI Set container color | Ad©
Change Visual
4 | Set Object color X
Object |token.item v /l
Color Color.byNumber(token.Type) -
e

e Object to the foken.item either by typing it or using the dropdown menu and selecting Labels, then

token.itenm.

e For the Color property, use the dropdown menu and select Color, then Color.byNumber(1).

e Edit the expression by changing the 7 to foken. Type.
The container’s color is based on its Type.

Sink
The definition of the logic flow is complete.

» Sclect the Sink activity from the Basic section of the Process Flow Libraty.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

I
%2}
-

-~

»2 AUTODESK

Text

Use the Container activity in the Désplay section to label

the parts of the logic as shown in the figure to the right.

» Drag out three Container, then label and size each
as shown in the figure.

This does not affect the model logic or processing but

makes the flow more readable.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

TGS

Create initial inventory of containers at racks

Create inbal
" contsmer mventory

= Create containers

|

Ll

2 Snk

Generate orders

3 Generate ceders

*5 Creste crder
Record aeder in table
| Generate order’s items

b
T Creste Fulfil order TS
Containers %

)

& Load order from queve

& Unioad order at table © St - Geraraca an orde’s 1ems
* Postoon crder

&l Find contamer to fil ardar

A Load container at rack
& Unload container at takle

|

i
@ i Geren

»2 AUTODESK

25.3.5 Define and chart performance indicators for the order-fulfillment process

The system is being designed to be responsive to customer |E%

Time to fill an order

demands. That is, the orders should be fulfilled as soon as possible,
of course, within reason. Charts and graphs are usually a beneficial
means to assess performance, especially over time. The ones used
in this example are shown in the figure to the right.

For orders, a good measure is how long it takes to fulfill an order —— =
20.00 40.00 50 00 80.00 100 00

(from the time an order arrives to the time it is completed) and how

many orders are waiting at any time. Therefore, 2 Dashboard of Time to' il an order over time
charts is created that shows this information. The time to fulfill an
order is displayed both as a histogram, to show the distribution of
times, and over time to see if there are times when orders back up..
The charts in the figure to the right are from a 4800-minute (80-

hour) run of the simulation model.

Since the time to fulfill an order is a key performance indicator, it Orders wailing

is defined in a Performance Measure Table so that it can be used 1
to evaluate alternative scenarios in the Experimenter. '

JAEAIE

g
The following provides step-by-step instructions for creating the J‘HJJHMW :]
plOtS. . “} ‘ B : : 20 25 30 35 &

035

» Use the Dashboards button on the Main Menu or use the ¥ button in the Toolbox and then select
Dashboard to create 2 new Dashboard.
» Name the Dashboard Orders.

Histogram
This chart provides a histogram of how long it takes to fill orders.

» From the Dashboard Library and Staytime pane, select the Staytime chart type, then Histogram.

Create the chart shown in the figure below based on the following description.
» Name the chart Time to fill an order.

» In the Options pane, use the * button for the Entrance Objects property to select Select Object, then
Queue, then OrderQuene.

» In the Options pane, use the © button for the Exit Objects propetty to select Select Object, then Sink,
then FulfilledOrders.

Thus, Flexsim measures the time each item spends in these objects and all objects in between.

» In the Settings pane, check Normalige Values. This converts the y-axis value from the count of
occurrences to the percentage of occurrences.
» Also, in the Settings pane, for Bar Mode

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

e Seclect By Bucket Width

e Set the Bucket Width value to 710.00
This property defines how many bars the chart has and their width. In this case, each bar is 10 units wide,
and there will be as many bars as needed to cover the data.

e v X “roperpes x
T- » - il il-'_”""""" =47}
Time to fill an order =] Options 2
Entrarce Qiects
A Xt Hh®
OrcerCQuaLe

t ¢ AP
5 — e S
2.00 20.00 10.00 5000 30.00 100.00
-
Tine Unts Mrutes
-| Settings 2
[steww Logend
| Sty | ataes
2 Noemsbize efupens
| Stack flars
Ear Node By Buckel Wioth
dudket Width | 100U
[kt Ot 0.0

For the 4800-minute simulation, 80% of the orders are filled within 10 minutes. However, a few took over an
hout. Most likely the longer durations are due to a temporary shortage of a specific type of container and/or
the absence of a Picking Operator when they were on break or at lunch.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Line chart

This chart also considers how long it takes to fill orders, but it looks at the process’s order fill time over time,
which helps identify when the long durations occur.

» From the Dashboard Library and Staytime pane, select the Staytime chatt type, then Line Chart.

Create the chart shown in the figure below and the following description.
» Name the chart Time to fill an order over time.

» In the Options pane, use the * button for the Entrance Objects property to select Select Object, then
Queue, then OrderQuene.

» In the Options pane, use the © button for the Exit Objects propetty to select Select Object, then Sink,
then FulfilledOrders.

» In the Settings pane,
e For Time Axis Mode, change to Show Duration and Hours.
e For Draw Style Width, set to Line.

E-m v X Propertes x
- . fA | Time to fil an order over tme | |4 h()
Time to fill an order over time = options 3
100 Entrance Objects
%0 * S X t 3 &
80 CrderQueue
0
&0
- 50 ‘ o
40 I | Exit Objects
30 I A LX)
20 FulflledCrders
20 ¢
" o
0 ~ e n—— A
5 10 15 20 25 30 35 40 45 50 55 ©0 65 70 75 80
- Staytime Display | Staytime
Tire Units Mnutes
=I Settings ?
E]S,“ow Legend
Y A Scope ange calouiated usng al
¥ Axs Range Full Range v

[mme vindow
Tme AxsMode Show Durab ~ Hours

Draw Style Lire

+1 Text ?

This chart shows when the longer durations occurred. Most were at the beginning, likely due to a temporary
shortage of a specific type of container.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Content chart
This chart shows the number of orders waiting over time.
» From the Dashboard Library and Content pane, sclect the Content chatt type, then Line Chart.

Create the chart shown in the figure below and the following description.
» Name the chart Orders waiting.

» In the Options pane, use the * button for the Objects property to select Select Object, then Queue, then
OrderQuene.

» In the Settings pane,
e For Time Axis Mode, change to Show Duration and Hours.
e For Draw Style Width, set it to Stair Step.

m v X Propertes x
R . | Ordars waitng tg (7]
Orders waiting
2.0 -| Options 2
1.8 Objacts
2 2 X 1t 3 “ 9
14 OrderQueue
- »
0.8
086
04
0.2
00
5 5 20 25 30 35 40 45 50 55 60 65 70 75 30
- ~| Settings ?
[IShow Legend
Y Axis Scope #ange caloylated Lang al
Y Axis Range Ful Range
[] Time Window 100,00 Seconds
Timz Axis Mode Show Duratt ~ Hours
Draw Style Star Step
] Text ?

This chart shows that during this 4800-minute simulation, there is no problem with the number of orders
waiting to be processed.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Performance Measure

A key performance indicator for this portion of the model is the time to fulfill an order. A summary measure

of the indicator is the average or mean time to fulfill an order. Therefore, that value is tracked in the

Performance Measure Table. As stated earlier, this is likely to be an indicator to consider when evaluating

alternative designs in the Experimenter.

As shown in the figure to the right and described below,

add a performance measure for the time an order takes

to complete.

» From the Toolbox, open the Performance
Measure Table named Performance Measures.

» Increase the number of Peyformance Measures to 5.

Name the measure TimeToFulfillOrder.

» Use the dropdown menu to define the Value.

A\

7 Orders /SRR

Performance Measures 15 =] 139! 1| [%

HNeme Vebs Dzplay Unts Desapbicn
RedrectzoContanzrs D
PadingThroughput 1163

Irentor

TimeToFulfilOrcer

In the Reference textbox, use the sampler (eyedropper) to click on the histogram of Time to fill an order
on the Dashboard named Orders, then select All Data, then A/l Data — Average. This results in what is

shown in the Reference and Value properties.

Note that the value for TémeToFulfillOrder in the figure is 77.21. This means the average time to fulfill an
order in the 4800-minute simulation is 11.21 minutes. While averages are helpful to summarize data, they can

also be a bit deceiving. While the average is 11.21 minutes, we saw earlier that 80% of the order fulfillment

times were below 10 minutes, and several were about an hour or more. Therefore, it is oftentimes helpful to

consider data in several ways.

N
If you haven’t already done so, save the model. Recall that it is good practice to save often.

gn Use the Save Model As option in the File menu to make a copy of the existing model to be further

=|| customized in the next section. Again, you can use any file name, but the following model is referred

to as Primer_20 in the primer.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

26 AGV TRANSPORT BETWEEN PACKING AND WAREHOUSE

Chapter 26 implements an AGV system to transport containers from the Packing Area to the
Warehousing Area. A Control Area is added to the AGV network to restrict traffic in the area to one
task executer. A chart is added to track the AGV’s utilization.

This final chapter of the primer model adds a simple AGV (Automated Guided Vehicle) system to transport

containers from the Conveyor after the Packing Area to each Rack in the Warehouse Area.

The AGV capabilities in Flex:Sim are extensive; however, in keeping with the theme of this primer, only the
basics are considered in the example. An overview of the example AGV system is shown in the figure below.
The chapter explains the addition of a transportation network in the model.

The AGV object, a Task Executer, picks up a container when it reaches the end of the Packing Area Conveyor
and transports it to one of the Queues in front of the Racks, depending on the container type. If there are no
containers to transport, the AGV returns to a “home” location near the conveyor pick-up point. The AGV
travels in a single direction - clockwise - around the network.

Since the Picking Operator must traverse near the AGV path for breaks and lunches, a Control Area is used
to avoid collisions. No more than one Task Executer object (AGV and Operator) can be in the area at any
time. Since the Picking Operator traverses the area infrequently, a simple test case is used to verify the zone is
working correctly.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

The base model for the additions described in this chapter is Primer_19 that was saved at the end of
Chapter 25. However, a copy of that file was saved as Primer_20; thus, we begin with that file.

The background or floor on the previous model was a bit dark, so it is lightened, as

shown in the screenshot to the right. To change the floor color:
» Click anywhere on the modeling surface, then open the View Settings pane in
the Properties window.

» Use the dropdown menu for Floor, highlighted by the red box in the figure to

the right, and select a light gray color, as indicated by the red arrow in the figure
to the right.

P

| |
- s T
gt | | 111111
G Fog R : -]
e |c] 2
noweugd 0 [T T
- e
Capture Vow
o Ploars
Pl (ot
The following figure identifies the AGV system's basic components.
.'* Control Area
-~ < /“ —
r “ik = A / \\\
? 7o —
|
1
=% _ _ _—— - —¢4
T vl
[A
S — .
Task Executer '_ \ ‘]‘”“lf”l
=113 AGV o Soln
C
A ! Path
k= 74 Yoin Paths to Direction of % ------ connection
e - Ve B R § travel on path J
< >
S
Path start, where
AGYV enters path

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

An AGYV system is a network of interconnected paths containing various decision-making capabilities.
e A network is composed of both Straight Path and Curved Path objects. In this example, considering the
simple overall rectangular shape of the network, only Straight Paths are used.
The curved paths in the model are automatically created by the Join Path tool in the AGV section of
the Object Library. (Technically, the Join Path is an object, but since it acts like a tool, that’s how I refer
to it.)

e AGYV paths can be either uni- or bi-directional. In this example, they are uni-directional.

e DPaths can force a single AGV orientation regardless of the AGV’s direction of travel; i.e., paths can control
which way an AGV must face. This is often used when an AGV uses a single path for backing into or out

of an area; however, this feature is not considered in this example.
e DPaths have a starting point, where an AGV enters the path, and an endpoint, where an AGV exits a path.
The AGV object is a type of Task Executer and thus has all of those properties.
Decision making in an AGV network is carried out through Control Points. These points control an AGV’s
entrance to a part of the network, where items are picked up or dropped off, where an AGV looks for work,
etc. Control Points act as allocation/deallocation points where AGVs look ahead to the next control point

and allocate that control point before moving to that point.

A Control Area object enforces mutual exclusion on one or more paths in a network. It can be integrated with

an A* network to restrict the number of travelers in an area.

26.1 AGYV path

The following describes how to lay out the AGV

Top
network, as shown in the figure to the right. The @ v X gt x
. . = |Pathi =K
numbers in the red circles on the screenshot are —— e 5%
: 7 — S e —
the suggested order for adding the paths to the { R
model; the names provide a reference to the cier [N - ~
X Y Z
paths based on orientation. Also shown is the W s [mo0 E[s0s F Reverse dircction
. . . End 2.8 i 6.9 =l of the path
button in the Properties window used to = ._?_: o e
change the direction of a path. It is highlighted @'% ! @ ’ B oy
by the red box in the Properties window to the W,
_ Left Right comilbton Type T
rlght. . 7 B icvorentaton Any
Conditonal Rule None
-| Triggers 2
-
BIBH £ B
Bottom

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Create the first path on the left side of the network:

» From the AGV section of the Object Libraty, select a Straight Path, then click on the 3D View near where
the AGV will enter the path; in this case, it is toward the bottom of the layout. Then, drag the top part and
click near its location; this is where an AGV will exit the path. This is an approximate size and location
since the values can be fine-tuned on its Properties window, as shown in the figure above.

» Name the Path AGV_Path_I ¢ft.

Create the second or right side of the network.

» Use Cntl-C and Cntl-V to copy and paste the first Straight Path and locate it near the Rack Queues. Align
the start end with the left-side path so the two paths are parallel.

» Press the reverse direction button so the path’s flow is from top to bottom.

» Name the Path AG1_Path_Right.

Create the third or top portion of the network.

» Drag out another Straight Path from the Object Libraty. Place the start end near the end of the left side
of the network, but not touching, then extend to near the queues in front of the racks.

» Name the Path AGV"_Path_Top.

Create the final or bottom side of the network.

» Use Cntl-C and Cntl-V to copy and paste the third Straight Path and locate it near the start of the first
path. Align the start end with the top-side path so the two paths are aligned and parallel.

» Press the reverse direction button so the path’s flow is from top to bottom.

» Name the Path .AG1”_Path_Bottom.

Join the path segments together to form a closed network.

» As shown in the figure to the left below, select the Join Paths object in the Object Library (the cursor’s
shape changes to a green arc), then click on Path _AGV_Parh_L eff so that it is highlighted (yellow) and
then click on Path AGI"_Path_Top so that it is also highlighted (yellow). The two segments will now be
joined, as shown in the center figure and the one to the right.

The center figure below shows the curved segment created by the Join Paths object when selected.
Note the start and end of the path segment (red circles), the direction of travel, and the connections to
the other straight paths.

The figure to the right shows part of the closed-loop network. Note that an X-like symbol denotes
where the path segments are connected.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

> Continue to click on the network paths, Path AGV_Path_Right, then Path AGV"_Path_Bottom to
complete the loop.
This is all done while the cursor’s shape is the green arc. If the cursor reverts to the basic shape,
reselect the Join Paths object as in the above step.

To get out of the Join-Paths mode (green arch shape) and return to the basic arrowhead cursor, press
the ESC key.

26.2 Control Points

Control Points enable the AGV to perform tasks and interact with the

other objects in the model. As shown in the figure to the right, six e
Control Points are used in this model. f? %
» Drag out six of the diamond-shaped Control Points onto the &
T >
modeling sutface. Ve
Note that the shape is a plain diamond when it is not connected]
to the network. .
h=D— Ora
N~ !
> Select and position each Control Point on the network and in the T
locations shown in the figure. e \"“\5_:._
Note that when a Control Point is a part of the network, the @ i d @ 1
diamond shape contains a plus-sign-like cross. TaskExecutort
Output: 0
Status: idle
The following describes what needs to be done at each point.

Control Point 1

The figure to the right shows the general properties of B e 4
.) J‘j»,.-- $ @ Cow Town N

a Control Point and the specifics for the one that T EX
-] Conl bt %1

interacts with the conveyor from the Packing Area. o - Y

» Make an A-Connection from the Control Point to
the Exit Transfer at the end of the Conveyor
from the Packing Area named Transfer_PackTo
Whse.

Note the connection shows up in the

ST 3 T
» Name the object CP_Conv_ToNext. i ‘ ‘ B S —A’l‘ .

1
| fustomascaty Resat

Connections section of the interface. e BLx 0

| Triggess

» Do not be concerned if the x and y locations do h .-

not match the ones shown in the figure. The x-location is determined by the path’s location, and your
layout may not be exactly the same as the example. In this case, having the Control Point in front of the
Conveyor is best.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Control Point 2
This Control Point is used for the Control Area, which will be discussed in a subsequent section.
» Name the object CP_ControlArea_1.

The next three Control Points are associated with the Queues in front of the Racks in the Warehousing Area.

Control Point 3

» Name the object CP_Type_1.

» Make an A-Connection from the Control Point to the Queue named RackQuene_1. Again, the
connection shows up in the Connections section of the interface.

Control Point 4
» Name the object CP_Type_2.
» Make an A-Connection from the Control Point to the Queue named RackQuene_2.

Control Point 5
» Name the object CP_Type_3.
» Make an A-Connection from the Control Point to the Queue named RackQuene_3.

Control Point 6

The last Control Point is the home location for the AGV, i.e., where it goes when it has no tasks to perform.

» Name the object CP_AGV_Hone.

> Since the Control Point is renamed, update its name in the AGV’s On Resource Available trigger.
Change the value of the Home Location or Destination to Model.find(“CP_AGV_Home”)

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

26.3 AGV

The AGYV object transports containers, one at a time,
between the Packing and Warehousing Areas. The
AGV is integrated into the model as described below

and as shown in the figure to the right. H ’

» Drag out an AGV object, which is in a dropdown
section of the Task Executer object in the Task
Executers section of the Object Library. Place the
AGYV near Control Point 6.

> Since the AGV will transport containers from the

Conveyor to the Rack Queues, make an S- or
. 1Rre OrResourcedvaloble at Simdaton
Center Port connection from the AGV to the <B Trave <9
PackToNext Conveyor’s Exit Transfer named

Transfer_PackToW hse.

Navgasar ACY Natwerk | v %
. Lz navigator for offset raved
» Be sure the Use Transport box is checked on the - Dapaicher &3
. 4 AGY Travoler
Exit Transfer’s Output section. S pots
— Triggers

» Name the object AGI_T1.
» In the Visuals section of the Properties window,

set the Z-rotation to 90 degrees.

» In the Task Executer section of the Propetrties
window, set the Load and Unload times to 0.05 minutes.

» In the Travel section of the Properties window, set the Max Speed to 60 meters/minute.

The AGV returns to one of the control points whenever it is idle. This is incorporated as follows.
» Usethe * button in the Triggers section to create an On Resonrce Available trigger.

» Usethe * button to the right of the On Resource Available textbox to select Travel to a Home Location.
» In the resulting interface, use the Sampler tool for the Destination propetty to select the Control Point
named ControlPoint1.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 31 72 AUTODESK

26.4 Control Area

A Control Area object enforces mutual exclusion on one or more paths in a network, and it can be integrated
with an A* network to restrict the number of travelers in an area. This is its role in this model — to avoid
collisions between operators (Order Pickers) traveling through the AGV network when they go on breaks and
lunches. The Order Picker(s) use the A* tool to guide it along the shortest path to its destination while avoiding
barriers and other objects.

Since the Picking Operator infrequently traverses near the AGV paths, a small model segment is added to test
that the Control Area is functioning correctly.

Control Area

The figure to the right shows the general
properties of a Control Area object.

» Drag out a Control Area object from the
AGYV section of the Object Library and
place it near the AGV network on the /

modeling surface. 4 | ‘
> Using the object’s handles (red triangles),

size and position it as shown in the figure &

to the right. !
» Name the object ControlArea_Top AGV . v £ ‘-

» Be sure the following properties ate set as

follows. = ——-m
T X b d‘hckﬁum

e Max Allocation is 1. This is the
maximum number of objects (Task Executers and AGVs) that can be in the Control Area at any
time.

o AGV Member box is checked.
o A* Member box is checked.

Test objects
The simple sub-model that tests the Control

Area uses a Source, Sink, and Operator, as

shown in the figure to the right.

» Drag out the following objects and place
them near the AGV network on the
modeling surface: Source, Sink, and
Operator.

» Arrange the objects as shown in the figure
to the right.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

» For the Source,
e Name the Source Tesz_Source.
e Make an S- or Center-Port connection from the Source to the Operator.

e In the Source pane, set the Inter-Arrival Time to 3, which generates an arrival (Box) every three
minutes.

e In the Output pane, check the Use Transport box.
» For the Sink, name it Test_Sink.
» Make an A-connection from the Source to the Sink.

» For the Operatot,
e Name it Tesz_Operator.

e In the Travel pane, set the Max Speed to 25, which slows down the Operator so it spends more
time in the Control Area and is easier to observe its behaviors.

> Open the A* Navigator tool in the Toolbox. In the Members section, select Traveler Members and use the

* button to obtain a list of objects in the model. In the Operator section, select Test_Operator.
> While in the A* Nawigator tool on the Visual tab, check the Show Heat Map box. This is helpful in
tracking Operators' travel.

» Reset and Run the model and observe the Operator and AGV behaviors.

Notice in each of the screenshots
in the figure to the right: [

e

1. The AGV is in the Control t‘{' -
Area, and the Test Operator is a \ E- &”x":-
stopped at the left edge of the e |
area.) ' }

2. The Test Operator is still waiting 7
while the AGV continues
through the Control Area.

a
Ko™
— Towt Cpester
G 3
o Sunn oo wooty

3. The Test Operator crosses the
Control Area after the AGV -
leaves the area and is at the Queue for the Rack named Type_2.

B

2
a2

4. 'The Test Operatoris crossing the Control Area, and OrderPicker_1 is stopped at the edge of the area on
the way to a break.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 313 72 AUTODESK

The test segment objects can be deleted once the model is verified, or they can be retained and moved out of
the way. In this case, it is retained and hidden by a visual — a set of offices.

» Drag out a Shape object from the Visual section of the Object Library.
» Name the object Visunal_Office.
> As shown in the figure below, size and locate the office near the Order Fulfillment Area.

Source Sink
under under
the desk the desk
v X Propecter :.(
g [Ve.cem wo
+ Stabtios 79
+ Temphte X2
— Voaub - ?
| Rpez comrireven.dn - 0
_—
= S z
—; sw (P am :Euu; ',
wluw Blew 3 |5
»aw 3 2
Vioew vauds

2 Lubds Pl
+ Visedl Tood T2
+ Pouts)
- Trggers 2

-

» Move the Soutce, Sink, and Operator test objects into the office object so they are hidden. The
Operator does not need to be hidden; it can be visible as if someone is in the office.

» Add the Visual to the A* Navigator.
e Open the A* Navigator tool in the Toolbox. In the Members section, select FR Menbers and use the

* button to obtain a list of objects in the model. In the VisualTool section, select 1isual_Office.

e While in the A¥* Nawvigator tool on the Visual tab, you may want to uncheck the Show Heat Map
box. This removes tracking the travel of Operators.

— N
g If you haven’t already done so, save the model. Recall that it is good practice to save often.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 31 72 AUTODESK

26.5 Dashboard Charts for AGV and Other Resources

The two key performance indicators for the AGV are (1) the contents of the conveyor from which the AGV
picks up packed containers and (2) the utilization of the AGV. They are added to the model in this section. In
addition, utilization charts on the Packing Robot and the Picking Operator are added.

Contents of the Pre-AGV Convevor

A content graph named Conveyors is added to the [Frr==T= == =
Dashboard. It is described below and shown in the ~ Contents of Packing Spur =
figure to the right. 4 T -
» Drag out a Line Chart type of Content graph and

place it below the chart named Contents of the Loop

Conveyor. — =
Update the properties as defined below and shown in the s ST
tigure to the right. M e T
» Name the chart Contents of Pre AG1” Conveyor. g
» Select the conveyor object from where the AGV | . j]:j-.:_' :

picks up containers by using the * button in the -

Objects section of the Properties window to select

Select Objects, then Straight Conveyors, then Pack 1o

Nexct.

» In the Settings pane, uncheck the Show Legend box.
» In the Settings pane, change Time Axis Mode to Show Duration and then change Seconds to Minutes.

Before adding the AGV to the Utilization Dashboard, resize and |* -~

.o FinishOperator
rearrange the existing charts so that a few new ones can be added.

Resize the charts so they are completely visible, and no vertical or

horizontal scroll bars are in the figure. The suggested rearrangement ooy

is shown in the figure to the right. ,

» To help fit the charts, change the Pie Siging Outside Radius as
follows.

e For the Finish Operator chart, set the Outside Radius to 75.0.
o For the Finish Machines chart, set the Outside Radzius to 50.0.

o For the Finish Machines Combined chart, set the Qutside
Radius to 75.0.

Finish Machines Finish Machines Combined

W3eko l0s
Erealdomm

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 315 72 AUTODESK

Add the utilization charts for the Picking Operator, Packing Robot, and AGV. The final U#/ization Dashboard
is shown in the figure at the end of this section.

Picking Operator

» In the State panc of the Dashboard Libraty, select = :M;:r ' :;
a State chart, then Pie Chart. Position it on the Order Picker i Options 3
Dashboard next to the Finish Operator chart. Lovting W .:,-.qu'_f o X T @

» Update its properties as desctibed below and shown Lo e
in the figure to the right. s

» Name the chart Order Picker. /

» Using the Sampler tool (eyedroppet) in the Objects 16.12%
section of the Properties window, seclect the sonrie
Operator OrderPicker_1 in the 3D view. " l":"’“w“ I

» In the Settings pane, change Pie Siging - Outer A Adiist colors baeed on state Tabie
Radius to 75. !

» In the Settings pane, change Pie Siging - Thickness
to 50. Use order I color palette

Pie Sizhg Fieed vabes
Cuter Radug 75.00
— nemew 5000 ?

Similarly, create the utilization charts for the Robot and AGV as described below.

Robot

» In the State pane of the Dashboard Library, select a State chart, then Pie Chart. Position it on the
Dashboard below the Finish Operator chart and update its properties as described below.

» Name the chart Robot.

» Using the Sampler tool (eyedropper) in the Objects section of the Properties window, select the Robot
Robot_1 in the 3D view.

» In the Settings pane, change Pie Siging - Outer Radius to 75.

» In the Settings pane, change Pie Siging - Thickness to 50.

AGV

» In the State pane of the Dashboard Library, select a State chart, then Pie Chart. Position it on the
Dashboard below the Order Picker chart and to the right of the Robot chart. Update its properties as
described below.

» Name the chart AG1.

» Using the Sampler tool (eyedroppet) in the Objects section of the Properties window, select the AGV
AGV_T in the 3D view.

» In the Settings pane, change Pie Siging - Outer Radius to 75.

» In the Settings pane, change Pie Siging - Thickness to 50.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

The completed Utilization chart is shown in the figure to
the right.

Based on the one 80-hour run of the simulation model
that generated the charts to the right, there is plenty of
extra capacity in most of the resources. Of course, the
included
components of the system being designed. As the model

resources in this model are the basic
is expanded to consider the size of the new facility, these
measures will be beneficial in the design of the proposed

system.

=

FinishOperator

Travel empty [l Travel loaded
W Loading Unloading Utilize

Idle Blocked Lunch

On break

FinishOperator_1

’

23.30%

Order Picker

Travel empty |l Travel loaded
W Loading Unloading [Allocated idle
Idle Blocked Lunch On break

OrderPicker_1

/

15.19%

Robot

[l Offset fravel empty
W Offset travel loaded |l Loading

Unloading Idle Breakdown
Stopped

Robot_1

6.60%

AGV

| B Travel empty [Travel loaded [l Loading
| M Unioading Idle Blocked

AGV_1

/

5.23%

Finish Machines
W Processing [l Setup Idle

Waiting for operator ~ Breakdown
Down
FinishMach_1 FinishMach_2

59.10%

Finish Machines Combined
W Processing [l Setup Idie

Waiting for operator Breakdown

Down

=
If you haven’t already done so, save the model. Recall that it is good practice to save often.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

This concludes the primer model. An overview of the model is shown in the figure below.

-

19 Le-B-E- SO0 of Tock rAowttom B) Eecd 1 Troe [Soet o Sackaroonds b Dacrboords 81 Process Fow R Wotkos 0 @
Flmese P fun @l Stop WO FasForvend B Sep D) Step Ru\ Tene: | 480000 * fun Spoed 1 ni .

: Use the Save Model As option in the File menu to make a copy of the existing model to be further
é customized in the next section. Again, you can use any file name, but the next model is referred to
as Primer_Final in the primer.

Note there are no windows — Library , Toolbox, or Properties — visible; they have all been closed.

To open any closed window, use the View option on the Main Menu.

As shown in the figure to the right, all of the window types can be [=== ~——=—"— =

opened from here. Obviously, there are a number of other |fie Edit View Execute Statistics Debug Help

windows that have not been addressed in the primer. The three we | |4 [[g #5 Model View (3D) 2
have dealt with are towards the middle of the list — Drag-Drop ||ddRreset T8 Model Tree kip
Library, Toolbox, and Properties. Of course, we have used the |EEigaer 8 Model Control GUI
Model View (3D); as mentioned, multiple 3D views can be A Start Page

.. . Open Default Workspace
opened, but it is best to have one model window open and define ? ?

. Drag-Drop Libra
multiple views (in the Properties window). . ?b p bRy
oolbox

Properties

Edit Selected Objects
Model Layouts

Measure / Convert

hLEYS S

Media Files

Animations and Components

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 318 72 AUTODESK

PART VII - SUMMARY AND APPENDICES

This section provides a summary of the primer model, three appendixes, and a brief bio of the author.

e Chapter 27 summarizes each major area of the model — Finishing Area, Conveyor Transport, Packing Area,
AGYV Transport, Warehousing, and Ozrder Fulfillment — and summarizes key properties of the model.

e Appendix A is a glossary of key terms used in the primer.

e Appendix B describes and explains elements of FlexSerpt (a subset of C++) that are encountered in the
primer when discussing setting some property values.

e Appendix C includes a brief description of the concepts and software features added in each primer model
and a reference to the section where the model is discussed.

e About the Author provides a brief bio of the primer’s author.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

27 SUMMARY OF THE PRIMER MODEL

Chapter 27 summarizes each major area of the model — Finishing Area, Conveyor Transport, Packing
Area, AGV Transport, Warehousing, and Order Fulfillment — and summarizes key properties of the

model.

Congratulations! You have successfully completed the FlexSin Simulation Software Primer. Hopetully, you

now better understand how to build Flex$7» simulation models to solve problems and make better decisions

through the power of discrete-event simulation and FlexS7's robust capabilities.

This final section provides a textual summary of the model that evolved throughout the primer. The final
model, as shown in the figure below, results from a development process that progressed from a very simplified
version of the system to one that more closely represents the actual operations. Note the heat map that shows
operator travel paths in the model. The operators use the A* algorithm to move about the area; 1.e., they take
the shortest distance between their starting point and destination while avoiding barriers and objects.

FlexSim Simulation Software

0"‘:
P Frexom

oo K 4l Primer

Recall that Dobry Products Limited (DPL) is planning to reuse an area in one of its production facilities to
tinish, pack, and store containers and fill orders. The new production area will finish various types of
containers and then the containers are packed by a robot, where the contents depend on the type of
container. The packed containers are then moved using an AGV to a warehouse area where they are used to

fulfill customer demand.

In this initial model, which would likely continue to evolve and expand as the system design process continues,
it is assumed that there will only be three types of containers packed with two types of components. Of course,
based on the manner in which the model is developed, it is quite easy to expand the model to consider a larger

number of products and components as well as increased production resources, people, and equipment.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

The basic units of measure are meters and minutes.

27.1 Description of modeling each major area of the facility

The following provides a brief description of the model for each major area of the facility — Finishing, Conveyor

Transport, Packing, AGV Transport, Warehousing, and Order Fulfilment.

27.1.1 Finishing Area and Conveyor Transport

The following figure shows the Finishing Area and the conveyor used to transport containers between the

Finishing and Packing Areas. It provides some close-up views of the objects in the area and charts of key

performance indicators, each of which is briefly described below.

Frish Machirwes Combined
b ooy g tote e

T >
2%
S Frexom

An #2 AUTODESK Company

Packing Arca

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

#2 AUTODESK

Combined utilization pie-chart for the Finishing Machines.

Separate utilization pie-charts for each Finishing Machine.

Contents of container storage area, both total and by type. Process times at Finishing Machines.
Utilization of Finishing Operator.

A S

Finishing Operator moving an incoming container to a Finishing Machine. Type 1 container is seen exiting

a Finishing Machine on the conveyor to the Packing Area.

6. Finishing Machines down for a quality check that occurs every 10 minutes and has a duration of 15 seconds.
Machines are in the “down” state and are colored orange during the downtime.

7. Finishing Machine broken down, as indicated by its red color, which occurs randomly on average every
two hours, and has a random time to repair that varies between 5 and 15 minutes. A Finishing Operator
performs the repair. The other Finishing Machine, colored green, is up and available to process.

8. Finishing and Order Picker Operators on break (personal breaks and lunch). They travel to the location of

the Dispatcher object and remain there for the duration of the break. The gray area is a barrier where the

Operators cannot travel.

The figure above also provides a close-up view of one part of the conveyor system and its performance

indicators for the conveyors.

1. The screenshot shows where the loop and straight conveyor to the Packing Area meet, a Decision Point
(blue triangle object), and a Photo Eye (green line object) that controls the container flow into the Packing
Area. If the photo eye is covered, approaching containers do not enter the conveyor to the Packing Area;
instead, they make a loop on the conveyor and try again.

2. 'The charts are time-series of the contents of the conveyor system — straight conveyor to Packing, loop
conveyor, and straight conveyor from Packing to AGV pickup.

Container arrivals

weipull(1B,.83, 16.39, 1.62) Refit

The containers arrive at the finishing area (upstream boundary of the |, . wmem |

model) with an average time between arrivals of about 20 minutes. | == g lis |

[20.80] [20.39

(Alternatively, the average arrival rate of about three containers is per

W cets

-l

hour.) FlexSin/s Distribution Fitter, a part of the Empirical Distribution
tool, was used to fit a random sample of 100 interarrival times. The best
fit was to a Weibull distribution, which is shown in the figure to the right
overlayed on a histogram of the sample data. The distribution was further
constrained to generate no interarrival times less than 10 or more than 35
minutes.

i
35.00

It is assumed there are no breaks in the arrival pattern, i.e., there is no downtime in the upstream operation,
and that the type of arriving container is random and is based on the percentage of product mix; i.e., there is

no batching of containers in upstream operation.

Arriving containers wait to be placed on a Finishing Machine in an area that can store five containers; the
storage area size is 1.1 meters by 8 meters. If when a container arrives, and there is no available space, it is
diverted to another area in the facility and is no longer considered in the model other than it is counted as a
“diverted item.”

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION : 72 AUTODESK

Finishing process

Containers are loaded onto one of two Finishing Machines by a single Finishing Operator; the load time is 3
seconds. The operator uses a variation of the Shortest Processing Time (SPT) rule to select a container to load
on an available machine and not the common First-In, First-Out (FIFO) rule. SPT means the quickest container
to process on a Finishing Machine is loaded first. This is, if any Type 1 (red) containers are waiting, they are
loaded first since they have the shortest processing time. If there are no Type 1s, then Type 2s (green) would
be loaded first. Finally, Type 3s (blue) are only loaded if there are no Type 1s and 2s. However, Dobry does
not want items to wait in the buffer too long; therefore, they follow the SPT rule unless a container has waited
more than 30 minutes or some other specified threshold value.

Currently, two identical finishing machines can process any type of container. Each machine is 3 meters square
and 2.5 meters high.

The processing time depends on the type of container — Type 1 (red), Type 2 (green), and Type 3 (blue) take
10, 20, and 30 minutes per container, respectively. The Finishing Machine automatically processes each

container; i.e., the Operator is not involved in the finishing process on the machine.

However, a setup is required before processing if the loaded container differs from the one that just finished
processing on that machine. The Finishing Operator performs the setup, and the time needed to perform the

setup is 2 minutes. Once loaded, the machine processes the container without the operator.

After processing, the machine itself loads the finished container onto a conveyor that transports it to the

packing area. The conveyor travels at a speed of 60 meters per minute.

Finishing machines are subject to two types of downtime.

e The first type of downtime is for a quality check where each machine pauses for 15 seconds every ten
minutes to upload data. This occurs regardless of the machine’s state and does not require the operator.

e The second type of downtime is when there is some type of failure within the machine. The time between
failures is an exponentially distributed random variable with a mean of two hours. The time to repair the
problem is also a random variable that is uniformly distributed between 5 and 15 minutes. For the failure
downtime, the finishing operator performs the repair. Failures can only occur when a machine is running,

The Finishing Operator travels at an average speed of 60 meters per minute and takes three seconds to load or
unload any item. The operator takes two 15-minute breaks per shift, one after two hours and one after six hours
into the shift. The operator also takes a 30-minute meal break in the middle of the eight-hour shift. For all
breaks, the operator travels to a break area outside the Finishing and Packing Areas.

Conveyance to Packing
Once a finished container completes processing, it is transported to the Packing Area via a conveyor. If the

straight conveyor that leads to packing becomes full, containers will travel around a conveyor loop until they
can access the packing line.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 323 72 AUTODESK

27.1.2 Packing Area and AGV Transport

The following figure shows the Packing Area and the AGV system that is used to transport packed containers
between the Packing and Warehousing Areas. It provides some close-up views of the objects in the area and
charts of key performance indicators, each of which is briefly described below.

1. Time series plot of the level of component inventory by component type.

2. Close-up view of the Packing Robot loading a Type 2 component (white cylinder) from its storage area
into a container at the packing station.

3. Close-up view of the Finishing Operator unloading a batch of Type 1 components. The packing robot is
stopped while the Finishing Operator is in the area.

4. Pie chart of the utilization of the Packing Robot.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 324 72 AUTODESK

The figure above also provides the AGV’s key performance indicator and close-up views of its operation.
1. Pie chart of the utilization of the AGV.

2. Close-up view of the AGV loading a container from the Packing Area.

3. Close-up view of the AGV unloading a container at the Warehousing Area.

Packing Area
A robot performs all operations in the Packing Area.

Once a container arrives at the end of the conveyor that enters the Packing Area and the packing station is idle,
the robot moves the container onto the single packing station/table. The container is then packed with
components, one by one, using the specified number and type of components. The contents for the three types
of containers used in this model are defined below. Only two types of components are considered in this model:
Component A (purple box) and Component B (white cylinder). The model has been designed to easily scale
up to more container types, component types, Finishing Machines, Packing Robots, AGVs, etc.

e Type 1 container is packed with 2 Component As and no Component Bs.

e Type 2 container is packed with no Component As and 4 Component Bs.

e Type 3 container is packed with 1 Component A and 4 Component Bs.

Once packed, the robot moves the container onto a conveyor that transports it to an AGV pickup point, where
an AGV transports it to the Warehouse Area.

The resupply of components to be packed into the containers is managed according to a Reorder-Point type
of inventory system. That is, when the on-hand quantity of a component in the Packing Area drops to a
specified reorder point level, a batch of that component is ordered. After an order time delay, the batch is
delivered to the Packing Area. When a batch of components arrives, the Finishing Operator unloads the batch
into the component’s storage area. The time to load a component is three seconds, as is the time to unload.

The reordering process is modeled using Process Flow in FlexSin.
The robot is stopped when an operator is in the area processing a batch of components.

Each robot is subject to downtime. The time between failures is exponentially distributed with a mean of four
hours. The time to repair is uniformly distributed between five and ten minutes. The repair is performed by the
Finishing Operator.

The Packing Area is pre-loaded with a specified number of components at the start of a simulation; i.e., there
is an initial inventory of components at the start of a simulation.

AGYV transport
Containers are transported from the Packing Area to the Warehousing Area via a single AGV. The AGV travels

on a simple uni-directional loop network at a speed of 60 meters per minute; the network is about 52.5 meters
long. The time to load and unload each container is three seconds.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 325 72 AUTODESK

The Order Pickers who work in the Order-Fulfillment Area may cross the AGV network when traveling to
and from the facility’s break area. Therefore, for safety reasons, part of the AGV network operates within a
Control Area, restricting travel to only one Task Executer object (Operator or AGV) at a time.

27.1.3 Warehousing Area and Order Fulfillment
The following figure shows the Warehousing and Order-Fulfillment Areas that store packed containers and

prepare them to fulfill customer orders. It provides some close-up views of the objects in the area and charts
of key performance indicators, each of which is briefly described below.

foh l';' | 1 ‘&

)L T
Wb N

1. Time series plot of the level of finished and packed container inventory by container type.
2. Close-up view of the racks used to store containers before order fulfillment.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

The figure above also provides the Order Fulfillment Area’s key performance indicators and a close-up view

of its operation.

1. Pie chart of the utilization of the Order Picker.

2. Histogram and time series chart of the time to fulfill an order. It also shows a time-series chart of the
number of orders awaiting processing,.

3. Close-up view of the Order Picker fulfilling an order. In this case, the operator is traveling from the
Warehousing Area with a container that is a part of the order being processed. Two containers have already
been picked and are on the order receptacle on the worktable.

Warehousing
In the Warehousing Area, there is one rack for each type of container, and all racks can hold up to 16 containers

on two levels.

Once a container is dropped off at the appropriate pre-rack queue, it is automatically loaded into the rack if
there is space. If a rack is full, the containers are automatically loaded into the rack when space becomes
available. The model includes the pre-rack queue to handle an overflow when a rack’s capacity is reached. This
helps to size the system during the design process. If the queues are not included before the racks, containers
would back up the conveyor from the Packing Area since there would be no place to route them. In the real
system, it may be necessary for an operator, possibly on a schedule, to move containers from the pre-rack

queues to their racks. If so, this would be an easy task to model.

Logic in Process Flow creates an initial inventory of containers on the racks when a simulation starts. The total
number of containers available on the racks at the start of a simulation is specified as a Model Parameter. The
type of container is randomly assigned based on the Product Mix distribution, which is specified as an Empirical
Distribution.

Order Fulfillment
The Otder Fulfillment process is modeled using Process Flow logic.

The arrival of containers in orders is assumed to be similar to that of the arrival of containers to the Finishing
Area from the upstream process, which was expressed earlier as a Weibull distribution. Of course, this is the
time between the arrival of containers, not orders. However, marketing has estimated the size of each order to
be one container 10% of the time, two containers 15% of the time, three containers 50% of the time, four
containers 15% of the time, and five containers 10% of the time. This is an Empirical Distribution referred to
as the order-size distribution. Based on this distribution, an order consists of one to five containers; the average

order size is 3.0.

It follows that the time between orders (not containers) is the product of the order-size distribution and the
interarrival time distribution of containers. Therefore, if the average time between arrivals of containers is 20
minutes and there are an average of 3.0 containers per order, then the average time between orders is about 60
minutes. Thus, the distribution of the time between order arrivals is assumed to be the product of the two
empirical distributions. Of course, once the products are being produced and sold, a more representative

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 327 72 AUTODESK

distribution of the order-arrival process can be determined. Still, for designing the production system, this
should suffice.

In the Flex:Sim model, an order is represented as a flat receptacle that holds an order’s containers. The order
items arrive at an order queue and wait until an Order Picker operator is ready to process the order. At that
time, an Order Picker moves the order from the queue to a worktable.

Orders are processed in the order they arrive, and an Order Picker completes an order before moving to the
next order; i.e., if a container is unavailable, the operator waits until it is available before processing the next
item. An operator could process multiple orders at a time, but more space and definitions would be needed,
such as how long an operator waits to start the next order, the maximum number of partial orders that can be
underway, etc.

The Otder Picker gathers the requisite number and type of containers from their racks in the Warehousing
Area and places them on the order receptacle. When all of the order’s containers are collected, the operator
takes a little over a minute to complete processing; the time to complete an order is assumed to be triangularly
distributed. Once an order is complete, it is transported by the Order Picker to a fulfilled orders area, which is
represented as a semi-truck. This is the end of the model; i.e., what happens to an order beyond this point is
not considered in this model. After disposing of the order, an Order Picker enters information into a computer

before processing the next order. The information entry time is assumed to be 15 seconds (0.25 minutes).

The Otder Pickers follow the same break schedule as the Finishing Operators.

27.2 Key properties of each aspect of the model.

The key properties of the model are summarized in the following tables.

e Table 1 contains information on the system’s products, i.e., the containers.
e Table 2 contains information on the components, i.e., the items placed in the containers.

e Table 3 provides general system and model information and is composed of three parts
o Part 1 — Process times, downtimes, and routing rules.
o Part 2 — Object capacities, speeds, and dimensions,
o Part 3 — Key Performance Indicators & Charts

It is recommended that each simulation run is for 80 hours (4,800 minutes), and when running experiments,

each scenario is replicated 20 times. Discussion of how these values are set is beyond the scope of the primer.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 328 72 AUTODESK

Table 1 - Information on the system’s product, i.e., the containers.

l Product / Container

Eroperty 1 2 3
Name Container
Type 1 2 3

!.'l'i l
Size (1 x w x h), meters 05x05x05 05x05x05 05x05x05
Shape Tote Taote Tote
Color Red Green Blue

5 [4 .
Contents 2,0 0,4 1,4

(Quantity of Components A and B per conuinet)

Setup at Finising [1] 2 2 2
Finishing 15 20 30
Packing 0.60 0.50 0.75

T Triangular Distribution with
Order Fulfillment o & . 2
min. 0.75, max. 1.50, and most likley 1.25

Weibull Distribution with min. 10 minutes

and max. 35 minutes; mean — 20 minutes

sl Tontainer 7 5

1 Setup is incurred when a container is different from the one

2 Type is based on Product Mix.

Reference/Source

Flowitem Bin
Label

Flowitem Bin, Container
Flowitem Bin, Containet

Source, ContainerArrivals

Glaobal Table, Packing

Finishing Machine object
Model Patameter, Finish Times
Global Table, Process Times
Process Flow, OrderFulfillment,
Process Order

Empirical Distribution, Produet
Mix

Empirical /Fitted Distribution,

InterArrival Times

Model Parameter, InitContIny

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Table 2 - Information on components that are placed in containers.

T
.
Component
Property A B Reference/Source
Name CompA CompB Flowitem Bin
Size (1 x wx h), meters 04x04x02 02x02x02 Flowitem Bin
Shape Box Cylinder Flowitem Bin
Colot Purple White Flowitem Bin
PR
Resupply Method Fixed schedule, then Reorder Point
Reorder Point, units 6 20 Maodel Parameter, ReOrderPoint
Batch {Reordet) Size, units 24 60 Maodel Parameter, ComponentBatchSize
Reorder Time, minutes 600 600 Madel Parameter, ReOrderTime
Time between deliveries, minutes 600 600 Model Parameter, ComponentFrequency
Store Capaci 1000 1000 Quocue object

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 330 72 AUTODESK

Table 3 — General system and model information — Part 1.

ad Times, i 5 0.05 all Task Executers (Operators, AGVs, Robots)

0.05 all Task Executers (Operators, AGVs, Robots)

!!”Ili-xi- i-l
Breaks (2 per shift), minutes 15 Time Table, OperatorBreaks
Lunch (1 per shift), minutes 30 Time Table, OperatorBreaks

!!”Il"xi. ‘-I l! ‘!‘-
Quality Check see Note [1] MTBF/MTTR QualityCheck, Clock-based
Breakdown see Note [2] MTBF/MTTR FM_Failures, State-based

thot Downtime Where set type

Breakdown see Note [3] MTBF/MTTR PackingRobots, State-based
Buffer to Finish Machines SPT (Shortest Process Time) unless wait is more than specified threshold
To Packing FIFO on convevot
To Warchouse by AGV FIFO on conveyor

Notes

Up Time = 10 minutes, Down Time = 025 minutes

1
2 Up Time = exponential with mean of 120 minutes, Down Time = uniform between 5 and 15 minutes
3

Up Time = exponential with mean of 240 minutes, Down Time = uniform between 5 and 10 minutes

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

Table 3 — General system and model information — Part 2.

Property/Characteristic Yalue Reference/Source

Container Storage
Finishing Machines
Packing table
Component’s table
Component's store
Robot

Pre-Rack queve
Warchouse Racks
AGV
Order-processing table
Control Area

Troch at Order Fulfillment

Finishing to Loop
Loop

Loop to Packing
Packing to AGV

AGY Path Length, meters

Di . length, widdh, heighy

80, 1.1,00
30,30,25
20,2010
10,3510
1.0,20,00
09,13,12
0.6, 0.6, 005
45,06,175
20,1010
15 20,10
102, 76,n/a

220,26,42

Capaciti Quantity Quantity item, where set
Pre Finishing Buffer 10 unfinished containers, Model Parameter
Pre-Rack Buffer 1000 packed container, Queve
Order Queve 1000 order, Queuve
Finising Machines | container, Object
Finishing Operatot 1 container, Object
Finishing to Packing Conveyot 100 containers, multiple Objects, approximate
Packing Robot’ | container and components, Object
K);’ckjng l"’hlc l ::l‘ll‘l.\ll.lcl put lllLull})lC (.(”ll})(lllcl> m conuuncr,
Packing to AGV Conveyor 12 containers, multiple Objects, approximate
AGV 1 container, Object
AGV Newwork 25 AGVs, multiple Objects, approximate
Warchouse Racks 16 containers, Object
Order Fulfillment Table 1 order, Process Flow
Order Picket 1 order, Object
Finishing Operatot 600 FinishingOperator object(s)

Order Picker 600 OrderPicker object(s)
Conveyors 60.0 Conveyor objects
AGV 600 AGV object(s)

!!' l“.xi. sl
Queve object
Processor object
Plane object
Shape Object
Queve object
Robot object
Queve object
Rack object
AGV object
Shape object
Control Area object

Shape Object

Conveyor objects
Conveyor objects
Conveyor objects

Conveyor objects

AGV Path object

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Table 3 — General system and model information — Part 3.

Measure
Redirected Containers RedirectedContainers Number of contziner redirected due to no space.
Packing Throughput PackingThroughput Number of containers through Packing.
Inventory of Component A Inventory_CompA Current inventory of Component A.

Inventory of Component B Inventory_CompB Current inventory of Component B.

Time to Fulfill Order TimeToFulfillOrder Average time to fulfill order in minutes.

.] arte [2\1] VAt l name !'h~“ “‘l”.

Contents of Continer Storage Content and Process Times. Times series
Contents of Container StorageBy Type Content and Process Times. Times series.
Process Times at Finish Machines Content and Process Times. Histogram,

—

Finish Operator Utilization Tilization. Pie Chart.

Order Picker Udlization Tilization. Pie Chart.
Robot Utilization Tlization. Pie Chart.

AGV Utlization Ttlization. Pie Chart.

el il i

Finish Machines Utilization Julization. Pie Chart.

Finish Machines Combined Utilization Utilization. Pie Chart.
Contents of Packing Spur Conveyors. Time series.
Contents of Loop Conveyor Conveyors. Time series.
Contents of Pre AGV Conveyor Conveyors. Time series.
Contents of Component Storage Over Time Inventory. Time seties.
Contents of Warchousing Area Inventory. Time seties.
Time to fill an order Orders. Histogram.
Time to fill an order over time Order. Time series.
Orders waiting Order. Time series.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 33: 72 AUTODESK

27.3 Epilogue

This primer focused on the modeling and analysis of a small but not simple operations system to aid in the
design of a new facility. Simulation is invaluable for understanding and assessing dynamic behaviors and
performance, i.e., operations dynamics. The primer leads the reader through detailed, step-by-step instructions
for building a simulation model. A screenshot of the final model is provided on the next page. The primer uses
a sequential model-development process so that the model evolves and builds upon simpler models. In addition
to describing the mechanics of building a model, the primer demonstrates the power of using discrete-event
simulation in general and FlexS7» in particular to support the decision-making and problem-solving processes.
As the model evolves, insight and rationale are provided, and good modeling and analysis practices are

introduced to demonstrate that model building is not just carrying out rote commands.

While all of Flex:Sin/s capabilities are not presented, the primer raises awareness of many of the more advanced
features available in Flex:Sin without covering the details at that time. Completing the primer should provide
the reader with a solid foundation to explore topics in more detail in the FlexSim User Manual, tutorials, videos,
blogs, FlexSim Answers, etc.

It was also beyond the scope of the primer to discuss or even introduce, all of the topics and methods that are
associated with simulation modeling and analysis. Therefore, it is suggested that the interested reader consult
the following or other more general references on simulation.

Greenwood, A. Simulation Primer, FlexSim Software Products, Inc., 2024. 5'“3%3:":)"

S A
&

Beaverstock, M., Greenwood, A., and Nordgren, W. Applied Simulation
Modeling and Analysis Using FlexSim, 5 Edition, FlexSim Software Products, Inc., 2017.

Your feedback is welcome!
Since improvements cannot occur in a vacuum, the author welcomes comments and suggestions;
please send them via email to allen.greenwood@autodesk.com

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 33/ 72 AUTODESK

mailto:allen.greenwood@autodesk.com

»2 AUTODESK

Lol XSIA0LNY & Uy

E_mvn.ul.n- KX

. 13odsuely
Ll 1L LT | Ly oeye—=

JIOWIIJ

2JEM1OS UOREINWIS W]SX3[d

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

APPENDIX A — GLOSSARY OF KEY TERMS

Appendix A is a glossary of key terms used in the primer.

3D shape

A* Algorithm

A* Navigator

Activity (Process Flow)

Activity Set (Process Flow)

Address (Rack)

AGV

Analysis
Animation
Array

Bay (Rack)

Continuous simulation

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

A visual representation of an object defined through an imported graphics file. The
object's user interface defines its size, location, colot, etc.

A heuristic search method used to find the shortest path between objects
considering barriers or obstacles and no-travel zones.

A FlexSim tool for creating barriers and identifying which fixed objects are
barriers in a model. The bartiers influence and restrict Task Executer (TE) travel
paths between objects. In contrast to Pazh Networks, which also controls Task
Executer movement, A* tells the TE where not to travel, compared to Path
Networks, which tells a TE where to travel.

Operations or steps in a logical process that are the building blocks of FlexSin/s
Process Flow. They are analogous to objects in 3D in that they (1) are dragged
from their library onto a Process Flow modeling surface or workspace and (2)

have properties that define their behavior.

Preconfigured activities bundled together that model a basic People Module task,
such as Walk then Process, Escort then Process, Wait then Process, etc.

Identifier of where an item is located/stored in a storage system. Typically, a
combination of letters, numbers, and separators that uniquely defines a so#in a

storage system.

Automated Guided Vehicle. A means to transport items using an item that
follows a defined path.

See Simulation Analysis.

A sequence of object movements that are triggered as a simulation runs.

A data structure that consists of an ordered series of elements that are indexed.
A section of a Rack object representing storage areas along the horizontal axis.
A type of simulation where the states of a system change continuously over time,
e.g., the filling of a tank with water or other fluid. This is compared to discrete-event

simulations where states change at discrete points in time, e.g., a part arriving at a
machine to be processed.

»2 AUTODESK

Conveyor A mechanical means to move items between points in space. There are different
types of conveyors, all of which can easily be modeled in FlexSim, including:

e Belt conveyor, sometimes referred to as a non-accumulating conveyor,
behaves as follows. An item travels down the conveyor until the end and
stops if it cannot be removed (downstream object or transport is
unavailable). When one item stops, the belt stops, and all other items on the
conveyor stop at their current location.

e Merge conveyor combines items from multiple conveyor lines into a single
line for further transportation.

e Power and free conveyor uses a free rail and multiple drive rails to move
items loaded on trolleys through a system.

¢ Roller conveyor, sometimes referred to as an accumulating conveyor,
behaves as follows. An item travels along the conveyor until the end and
stops if it cannot be removed (downstream object or transport is
unavailable). Subsequent items on the conveyor continue to flow on the
conveyor and stop behind the one in front.

e Slug conveyor is a type of merge conveyor where a group of accumulated
items are released for further transport; thus, items are released in “slugs.”.

e Sorting conveyor transports items to different destinations based on stated
criteria and item properties. Sorting typically involves conveyor logic

objects such as decision points, stations, and photo eyes.

Dashboard An area for displaying values of some variable as a model runs, typically the
current state of a system or summary measures (e.g., mean). The display may be
in text form but is normally a graph or chart that updates as a model runs.
Dashboards provide a means to view the system dynamics.

Discrete-Event Simulation The means to consider the dynamics of a system by creating and managing events
at discrete points in time. Each event changes one or more states of a system.
The resulting state change and modeling logic causes an action or activity to

occur.

Distribution Fitter A statistical tool used to best fit system data to theoretical probability
distributions. It is typically used to define input distributions to a simulation
model from operational data but also to characterize output data obtained from
a simulation as probability distributions.

Domain expert A stakeholder in a simulation project with specialized knowledge or skills in an
area of interest.

Dot Notation A convention in object-oriented programming where the elements of an object
(variables and methods) are separated by dots, e.g., Processor. Type where Type
is a variable attribute (label) of the object Processor.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 337 72 AUTODESK

Downtime The time period when a resource is not available to perform its basic functions.

Downtimes are either planned or unplanned.

e Planned downtimes are expected to occur at known times and typically
recur on a regular basis. Examples include shift schedules, operator breaks,
and periodic quality checks. Planned downtimes are implemented in
FlexSim via the Time Table tool.

e Unplanned downtimes occur unexpectedly. Examples include machine

breakdowns and operator absenteeism. Unplanned downtimes are
implemented in FlexSin via the MTBF/MTTR tool.

Empirical Distribution A probability distribution derived directly from system data; i.e., the system data
are not fit to a theoretical probability distribution.

Event An occurrence at an instance in time. When an event occuts, it causes one or

more system states to change and possibly one or more actions.

Experiment A set of scenarios and performance measures considered for analysis. The simulation
model is run for a prescribed number of replications and duration and may

involve excluding a warm-up period.

Experimenter A tool for designing, executing, analyzing, and possibly optimizing simulation
models. It provides a means for defining scenarios, performance measures, number of
replications, simulated time or duration, and whether a wamz-up period is
considered. In FlexSim, the Experimenter can directly connect with OptQuest to

perform optimizations.

Fixed Resource Objects in a model that are fixed or stationary, e.g., Processor or Combiner.
Typically, fixed resources process flowitems.

FlexScript A scripting language that is a subset of C++ within Flex:Si# that can be used to
define logic and behaviors via custom coding. FlexScript includes many pre-built

functions, or commands, for performing common programming operations.

Flowitem (Item) As the name indicates, something that flows through a simulation model.
Movement is triggered by events and controlled by model logic. Similar to entities
or transactions in other simulation software.

Flowitem Bin A tool in the Toolbox for customizing and creating flowitem classes, including

size, shape, graphic, labels, packing method, etc.

Global Table A tool that provides a systematic means to store information in terms of rows

and columns.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 338 72 AUTODESK

Global Variable User-defined information that can be accessed and updated from anywhere in a
FlexSim model at any time during a simulation. Each variable is typed as Integer,

Real, String, Array, etc.
Ttem See Flowitem.

Job A defined strategy for generating scenarios in the Experimenter. There are three
type of jobs in FlexSim — experiment, range-based, and optimization.

Label A uset-defined property on an object or item that can be defined, used, and/or
updated at any time during a simulation.

Level Storage spaces along the vertical axis of a Bay in a Rack object.

Library Set of modeling objects, tools, Process Flow activities, dashboard, or user-
defined.

List A tool for creating complex flows in a model. Basically, under a specified

condition, an object pushes information onto a list (referred to as a list entry),
and under a different condition, an object, using selection criteria, pulls an entry
from the list, resulting in an action in a model.

Mobile Resoutrce see Task Executer.

Model Representation or abstraction of a system and its behavior. A model represents a
system’s components and the interaction among the components, the variability
inherent in the system, and the system’s dynamic behavior.

Model Fidelity The degree to which a model represents the actual system. While it might appear
that more is better, in this case, it is not. A model should only be as detailed as
needed to answer the posed question(s). Of course, this is easier said than done;
determining the proper fidelity comes with practice and experience.

Modeling See Simunlation Modeling.

Modeling Surface The interface where models are built in 3D space by dragging and dropping
objects onto the gridded surface and locating them in 3D space in terms of their
X, y, and z coordinates. In FlexSim, the surface grid’s unit of measure is specified
as Length Units when a model is created; e.g., if the Length Unit is feet, then each
grid unit represents one foot in the x and y directions. Similar modeling
environments are available when defining model logic in Process Flow and
creating charts and graphs in Dashboards; however, these are just dimensionless

work surfaces for organizing work.

Modeling Workspace See Modeling Surface.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 336 72 AUTODESK

Monte Carlo simulation A means to obtain numerical results based on repeated random sampling,.

MTBF/MTTR Mean Time Between Failures / Mean Time To Repair. In FlexSim, this tool
provides the ability to model the reliability of an object in terms of a set of
parameters and properties such as the time between failures (operating time),
downtime duration, resources needed, states affecting the time between failures
(e.g., clock time versus processing time), etc. Typically, the time between failures
and repair times are random variables.

Object A pre-built, yet customizable, representation of actions commonly found in
operations systems, such as planned and unplanned delays (e.g., processing,
storage), transportation via fixed (e.g., conveyor) or mobile (e.g., operator) means,
combining or separating objects, etc. Its behavior is defined through properties
that are specified via its user interface, the Process Flow logic builder, or custom
computer code using FlexSeript.

Object Library A list of available objects that can be selected, dragged, and dropped onto the
modeling or work surface. The primary FlexSim library contains Fixed Resources,
Task Executers, Conveyors, Fluids, Modules, etc. User libraries of objects can be
developed that contain special user-developed objects. Other libraries are
available for defining logic in Process Flow and creating charts and graphs.

Object Flow Diagram A diagramming methodology used during the conceptual design phase of model
development to identify and represent the various system elements and
relationships that must be considered by the simulation.

Operational dynamics The changing behavior and performance of an operations system over time.

Optimization The search for the “best” solution, i.e., the best means for running an operations
system. It involves changing system parameters or characteristics and evaluating
the resulting performance. Optimization algorithms provide means for effectively

carrying out the search.

Operations system A collection of elements that transform input into output through a set of related
activities and processes that require a variety of resources, such as equipment,
material, people, and information. Operations systems are characterized by
complex interactions among resources with numerous sources of variability,
which drives its dynamic behavior, i.e., changing behaviors and performance over
time.

OptQuest A simulation optimization software product developed and maintained by
OptTek Systems, Inc. that provides algorithms and analysis techniques for
determining the best input values to obtain the best outcomes.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Parameter Table A tool that organizes and stores global variables that can easily be accessed from
anywhere in a Flex$77 model. The values in the table can be updated in the table
rather than within an object in a model. The values are also easily accessed by the

Excperimenter to facilitate evaluating alternative scenarios and drive an optimization.

Path Network A set of connected nodes that defines a path on which Task Executers (TE) can
travel. In FlexSim, straight-line or curved paths restrict the direction of travel,
speed, and whether passing on the path is permitted. In contrast to 4-57ar, which
also controls Task Executer movement, a Path Network explicitly restricts or
limits where a TE can travel, whereas A* identifies what a TE needs to avoid or

where it cannot travel.

Performance Measure An output of a simulation model that is of interest for analyzing and
understanding the estimated behavior of the system being considered.

Performance Measure Table A tool that defines, organizes, and stores key performance indicators. The values
are also easily accessed by the Experimenter to facilitate evaluating alternative
scenarios and drive an optimization.

Port A means for items to move in and out of objects (input and output ports). Also,
it provides a means for objects to communicate (center ports). Whenever two
items are connected, a port is created on each object. Theoretically, there is no

limit on the number of ports an object may have.

Process Flow Drag-and-drop, flowchart-like logic builder within F/exSin that uses various types
of activities and their properties to define inter-object or intra-object logic.

Pull logic A means of flow between objects where the decision as to which object an item
is obtained from is determined by the receiving object, not the sending object.
See also Push logic.

Push logic A means of flow between objects where the decision as to which object receives
the item is determined by the sending object, not the receiving object. See also
Pull loge.

Queueing System An operation composed of three main elements - customers, servers, and queues

(also referred to as buffers) where customers require service from one or more
servers. If a server is not available when the customer demands the service, the
customer waits in a queue until a server is available. The interactions among the
three elements result in the behavior of the system.

Reliability The probability that an object performs its desired functions under certain
conditions for a period of time. Another way to state this is that reliability is the
probability that an object does not fail over a petiod of time. See MTBF/MTTR
for the means to specify reliability in FlexSin.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

Replication Repeating the execution of a simulation model using a different random number
stream. Replications are necessary because simulations involve random variables
or stochastic parameters. As a result, system performance varies from simulation
run to simulation run, just as in the actual system.

Routing The logic that is used to move items between objects. Commonly, items are
“pushed” from one object to another but may also be “pulled” from one object
to another. Routing is typically defined on an object’s Output pane in the
Properties window.

e Push logic involves deciding which output port will be used. The decision
might consider sending an item based on the first downstream object
available, the one with the shortest queue, a condition based on the value of
the item’s attribute (label), the state of the system, etc.

e Pull logic options are similar to those used for pushing, but the decision
involves which input port on the object should be used to obtain an item.

Run Time The duration of a simulation run in simulated time, not real-time. Time in FlexSim
is unitless; it is given context through a user’s specification of time units (e.g.,
seconds, minutes, days). If a user specifies the model units as seconds, then a Run
Time of 10,000 is 10,000 seconds of simulated time (about 2.8 hours).

Run Speed How fast a model runs relative to real time. For example, if a model’s units are
specified as seconds, then a Run Speed of 1000 means the model runs 1000 times
faster than in real time. Therefore, if a model’s Run Time is 10,000 seconds (about

2.8 hours) and Run Speed is set to 1000, the 2.8-hour simulation will take 10
seconds to run.

Scenatrio A combination of a model’s decision variable values. The values of the variables
are changed during experimentation to determine their effect on estimated system

performance.

Simulation A process that involves the modeling and analysis of an operations system to

improve organizational performance.

Simulation Analysis Simulation models are built for analysis. As such, analyses are the ways and means
of using a simulation model to experiment with and test ideas and alternatives
before deciding actions and committing resources. Analyses may be performed
within the software or exported to other software. In addition to output analyses,
input analyses are needed to define system properties and represent them in a
model. Oftentimes, input analyses involve selecting the most appropriate
probability distributions to represent aspects of the system, e.g., process times,

inter-arrival times, and quality.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 3 72 AUTODESK

Simulation Modeling

Slot (Rack)

State

Staytime

Study Model

Table

Task Executer

Task Sequence

Theoretical Distribution

Time Table

Token

The ways and means for representing a system physically (size, distance, speed,
etc.) and logically (what, who, when, and where things are done, as well as how
much and how long) in order to understand its behavior over space and time and

to assess possible consequences of actions, virtually.

A storage space in a Rack object that is a subdivision of a Bay in the horizontal
direction.

A condition of a system or the value of a system variable, such as whether a

resource is busy or idle or how many customers atre currently in the system.
How long an item stays in an object.

A small model for testing and validating a method or concept in isolation before
incorporating it into the primary model. This good modeling practice is
commonly used to develop logic for a single object or set of objects.

A systematic means to store information. In FlexSim, tables can be imported from
or exported to Microsoft Excel. See either Global Table, Time Table, or Parameter
Table.

A mobile resource that moves about in a model, typically to move items between
objects. They include operators, fork trucks, AGVs, cranes, etc. As the name
indicates, the object executes a sequence of tasks that are sent from another
object. Tasks include traveling between objects, loading an item, processing an
item, etc. Tasks can be prioritized and can preempt other tasks.

A set of tasks that a Task Executer (operator, fork truck, crane, etc.) carries out.
Typically, task sequences are requested and sent by fixed resources or Process
Flow activities and involve tasks such as traveling between objects, loading an
item, processing an item, etc.

A probability distribution such as the Beta, Exponential, Lognormal, Normal,
p Y p g
Triangular, Uniform, Weibull, etc. that represents a discrete or continuous
property. For example, an arrival process may be exponentially distributed or a
processing time may be considered to be triangularly distributed.

A means to define and specify a resource’s deterministic availability, such as shift
schedule, operator break times, periodic inspections, etc.

The basic component of FlexSin’s Process Flow logic. Tokens are analogous to
flowitems in 3D in that they flow through activities as a simulation runs.
However, tokens are typically more abstract than flowitems since they usually
represent logical flow rather than physical flow. Each token has a set of labels or
characteristics.

»2 AUTODESK

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

Toolbox A type of library that contains modeling tools or aides, such as data tables,

timetables, storage systems, etc.

Transfer Objects that are automatically created in a model whenever a conveyor segment
is connected to another conveyor segment or another type of fixed resource.
There are Entry and Exit Transfers.

Tree The hierarchical, object-oriented data structure that stores a model’s data. In
FlexcSim, all of this data is readily accessible.

Trigger A place in a model, typically in an object, where optional actions can be defined
to occur when certain conditions are met as 2 model runs, such as when an item
enters/exits an object, a process is finished, a message is received, the model is
reset. There are many types of actions that can occur when a trigger is “fired,”
such as changing an item’s appearance (shape, color, etc.), reading/writing a table

ot label value, opening/closing ports, sending a message, etc.

Units Units of measure - time, length, and volume (for fluid-based models only) - must

be specified at the beginning of a simulation.

Validation The process of determining if a model is accurate enough for its intended use.
Verification The process of determining if a model has been implemented correctly.
Warm up A period of time at the beginning of a simulation where statistics are not collected.

This allows a simulation to get to a point where the conditions are more
representative of those that would occur in the actual system. For example, a
simulation may start with all resources empty and idle, which may not be typical
in the real system. Thus, the statistics would be biased low if this eatly time is
included in an analysis.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 34/ 72 AUTODESK

APPENDIX B - PROGRAMMING-BASED PROPERTY VALUES

Appendix B describes and explains elements of FlexSeript (a subset of C++) that are encountered in
the primer when discussing setting some property values.

item. Type
The value of the label named Type on the flow item being processed.

current. Type
The value of the label named Type on the current object (e.g., Source, Processor, Task Executer), the object
currently being processed.

exponential (0, 10, getstream(current))

A function that returns a sample value from an exponentially distributed random variable with a mean of 10.
The random number stream is based on the object making the function call. Random sampling and random
number streams are general simulation topics, but discussion is beyond the scope of this FlexS$7m primer.

getstream(current)

A function that returns a random number stream value based on the object making the function call. Random
sampling and random number streams are general simulation topics and are not discussed in this FlexSin
primer.

duniform(1,3, getstream(current))

A function that returns a sample value from a uniformly distributed random variable with discrete values
between 1 and 3; basically, it returns a value of 1, 2, or 3 with equal likelihood. The random number stream is
based on the object making the function call. Random sampling and random number streams are general

simulation topics, but they are beyond the scope of this FlexSim primer.

triangular (10, 35, 15, getstream(current))
A function that returns a sample value from a triangularly distributed random variable with a minimum value
of 10, a maximum value of 35, and a most-likely value of 15. The random number stream is based on the object
making the function call. Random sampling and random number streams are general simulation topics, but are
beyond the scope of this Flex:Si primer.

Empirical(EmpiricalDistributionl).get(getstream(current)

A FlexcSeript class that returns a sample value from an empirically distributed random variable. The empirical
distribution name EmpiricalDistributiuon1 is user defined, and the distribution may be discrete, continuous, or
fitted using system data to a theoretical distribution. The random number stream is based on the object making
the call. Random sampling and random number streams are general simulation topics, but are beyond the

scope of this FlexSim primer.

Model.parameters.FinishTime_
Provides the value of the model parameter named FinishTime_

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 345 72 AUTODESK

Color.random()

Sets the color of an item or object to a randomly-selected color.

Color.yellow
Sets the color of an item or object to yellow.

Color.byNumber(item.Type)
Sets the color of an item to the current value of an item’s label named Type. FlexSim’s default color palette is 1
= red, 2 = green, 3 = blue, 4=yellow, etc.

current.centerObjects|1]
References the object connected to the current object’s first center port.

current.setProperty(“MaxContent”, Model.parameters.BufferSize);
A code snippet that sets the value of the current object’s property named MaxContent to the value stored in
the Model Parameter named BufferSize.

current.outObjects[1].Cover == 0
A conditional test to see if the value of a label named Cover on the object that is connected to the current

object’s first output port is equal to 0.

Model.parameters|“Initlnv-Comp_A”].value

Obtains the current value of the Model Parameter named InitInv-Comp_A

token.CompNum == token.NumComp

A conditional test to see if the value of a token label in Process Flow named CompNum is equal to the value

of another token label in Process Flow named NumComp.

token.Component.CompType
References the value of an object’s label named CompType; the object’s reference is stored in a token’s label

named Component.

Table(“ComponentReference”).executeCell(token.CompType, “ROP”)
Executes a FlexScript code statement located in a cell in the Global Table named ComponentReference. The
cell is located in the row given by the value of the token label CompType and the column named “ROP”.

token.Storage.subnodes.length
The number of items currently in the object that is stored in the token label named Storage.

More information on coding in Flexserjpt is available in the FlexSim User Manual and the following: another
primer by this author entitled .4 Primer on Coding in FlexSim 2017. Section 3 of Chapter 12 in the Applied Simulation
Modeling and analysis Using FlexSim textbook.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

APPENDIX C - MODEL SUMMARIES

Appendix C includes a brief description of the concepts and software features added in each primer
model and a reference to the section where the model is discussed.

Finish Filename Primer . .
) Brief Description

Base Filename Reference

MyFirstModel al 5 Simple, single-server quevcing system using all default values. Basic 3D objects

Base: none apler - and connections. On-object output statistics.
Initial model of Finishing Area. Customization of the Source (triangularly-
distributed inter-arrival times, new flowitem class for containers, On Creation

Chapter 7 trigger to define the label Type and set the item's colot), Queve (maximum
Primer 1 content and item placement), and Processor (process time based on Type, set-up

Base: MylarstModel

time). Create new item, container, in Flowitem Bin.

Chapter 8

Setting Run Time and Run Speed. On-object statistics. Dashboards, add time-
series plots of Queve contents over time, both total and by container type,

histogram of time waiting in Queuve.

Primer_2

Base: Pomer_1

Chapter 9

Incorporate Finishing Operator to move containers from container Queve to
Finishing Machine Processor. Use Dispatcher object to control Operators.
Operator performs setup operation on Processor. Customize Operator

properties (speed, load /unload time, do not travel offset).

Primer_3

Base: Pamer_2

Chapter 11

Change Finishing Machine and Container Queve graphies. Add a second
Finishing Machine. Employ new routing rules for (1) moving containers between
the container Queve and Finishing Machines and (2) if no space is available

when a container arrives. Create Model Views.

Primer_4

Base: Pomer_3

Chapter 12

Define product mix as an Empirical Distribution. Fit arrival process data using
FlexSim's curve fitter and use it to specify the probability distribution that best

represents the interarrival time distribution for containers.

Primer_4A

Base: Pomer_4

Chapter 13

Introduce Model Parameters and Global Tables. Use Parameters Table to store
finishing times. Use Global Table to store the time and type of each container as

they arrive to the system.

Primer_5

Base: Pomer_4A

Chapter 14
(Sect 14.1-142)

Add downtime for break and lunch times for the Finishing Operator and a chart

to summuarize utilization and percentage of time the Operator is in different

Primer_6

Base: Pomer_5

Chapter 14
(Sect 143.1455)

Add a quality check type of downtime on the Finishing Machines, which occurs
on a fixed time interval and requires no resources. Add a composite state chart

for the Finishing Machines.

Primer_7

Base: Pomer_6

Chapter 14
(Sect 14.6-147)

Add random breakdowns on the Finishing Machines that has random repair
times and needs the Finishing Operator to perform the repair. Add two state
charts that summarize utilization and percentage of time in various states - one

for the Finishing Operator, and one that shows the states for each Finishing

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

»2 AUTODESK

Finish Filename

Primer

) Brief Description
Base Filename Reference
Create flow items for each type of component and a Source to generate batches
of each type of component at a specified frequency and quantity. Create a data
Primer 8 Chapter 15 table to store information on operations. Use Model Parameters Tables to store

Base: Pamer_7

(Sect 152.155)

each type of component’s batch frequency (time between batches) and batch
size. Provide a queve for batches to await processing. Provide storage areas for

components, i.e., each type of component has its place to be stored in the

Primer_9

Base: Pamer_8

Chapter 16

(Sect 16.1-16.6)

Use a Separator object to unpack components. For each batch, the Finishing
Operator moves it from the queve to the Packing Area, unpacks it, and loads the
components into its storage location. Connect Finishing and Packing Areaby a
simple conveyor. Using the Combiner and Robot objects, containers are packed
with components based on their type. The Robot incurs downtimes that the
Finishing Operators addresses. Additional model views are created. Charts are

used view component inventory levels and assess batch policies.

The first of two alternative means to control the travel paths of Task Executers

Primer_10 Chapter 17
: _ .3} when moving between obects is applied. This alternative uses Path Networks, a

Base: Pomer_9 (Sect 17.1) R X . N . R)

set of connected node objects, which defines restricted paths for the TE to
A-StarStudy Chapter 17 A simple study model is used to introduce the basics of using the A* Navigator
Base: None (Sect 1721) o control Task Executer travel.

The second of two alternative means to control the travel paths of Task
Primer_10A Chapter 17 Executers when moving between objects is applied. This alternative uses the A*
Base: Pamer_10 (Sect 17.2)

Navigator, which employs the A* algorithm to define the shortest path between

objects while avoiding specified barriers.

Primer_11

Base: Pamer_10A

Chapter 18

(Sect 181-182)

FiacSim'’s Experimenter is introduced, including setting up experiments, running
multiple replicated scenarios, and analyzing the results. Two examples are
included, which assess the effect on performance of: (1) the size of the buffer of

containers prior to Finishing and (2) component replenishment plans.

Primer_12

Base: Pamer_11

Chapter 19

(Sect 192)

Connect the Finishing and Packing Areas via a loop conveyor. Each Finishing
Machine feeds contziners to the loop conveyor. A spur line connects the loop
conveyor to the Packing Area. Controls (Decision Point and Photo Eye) are
added so that if the spur line to becomes full, containers travel on the loop

conveyor until the spur has capacity.

Primer_13

Base: Pamer_12

Chapter 20

(Sect 201.202)

A few Parameter updates are made: higher arrival rate of containers, change in
product mix, and change in component delivery frequency and batch size. Also,
two new charts are addeded to track the contents of the conveyors. Change the
routing logic between the container queve and the Finishing Machines to a
simple Shortest Processing Time rule - Type 1 containers are always processed
first, the Type 2, then Type 3.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION

#2 AUTODESK

Finish Filename Primer

) Brief Description
Base Filename Reference
. . ~ Change routing logic between container queve and Finishing Machines to the
Primer_14 Chapter 20
_) _— Shortest Processing Time rule unless a container has waited more than a
Base: Pomer_13 (Sect 203)

specified threshold value, then it has priority. This is implemented using the List

A Introduction to Process Flow. Add three Model Parameters Tables to support
Chapter 21

e 21 modeling in Process Flow - for each component, add its reorder point, reorder
{dect 21.2)

time, and initial inventory

Pri (s The first Process Flow example provides the capability to have a model start with
rimer_15 . g - . .

an initial inventory of components rather than all stores being empty at the start
Base: Pomer_14 ‘ .

Chapter 22 this provides a more realistic starting condition. This addition includes such
(Sect221-222) Process Flow activities as scheduled source, assign labels, create objects,
decision, and sink. Also, a Global Table is created that contains all of the

information on the components.

Process Flow is used to model a reorder-point inventory system, which is used
to control the inventory of components. Prior to creating the logic, several
changes are made to existing 3D objects for aesthetics, to facilitate wsing Process
_ . Flow, and to create a generalized soution. The changes include: (1) incorporating
Primer_16 Chapter 23 :
_ L a non-functional Visual object (a table) beneath the component storage objects in
Base: Pamer_15 (Sect 23.1) . - . R .
the Packing Area, (2) resetting the colors of the component storage objects at the
start of a simulation, (3) creating a component order item, (4) removing objects
for scheduled orders, (5) creating a storage Group, and (6) adding and updating

data in the components’ Global Table.

Use ol Process Flow 1o implement a reorder-point INvVentory management system
for the components that are packed into containers. A wide variety of Process
Flow activities are used, including custom task sequences for the Finishing

Primer_17 Chapter 23 . . .
P Operator, event-driven source, assign labels, decisions, breathe, sub-flows, create

|]
]
M
L

Base: Pomer_16 (Sect 232
and delete objects, visual changes, decisions, and custom code. In addition, to

help verificiation and validation, the example introduces breakpoints and token

colasing

Introduce the Standard Rack, a 3D object, and use it to store containers in a

. . Warchousing Area. Customize the size and configuation of the Racks. Each
Primer_18 Chapter 24

Base P - container type is stored in its own Rack. Add 2 Model View of the Warchousing
asc romer_ 1)

Area. Create a time series chart that shows the the number of containers in the

Warchousing Area by type.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

Finish Filename Primer

) Brief Description
Base Filename Reference

Define the order-fulfillment activities in Process Flow, which includes
generating orders (random times and content) for containers and having an
Order Picker gather the appropriate containers, fulfill the order, and update an

informtion system. Order mix is an Empirical Distribution read from Exal. An

o]
wn

Primer 19 Chapter order is a new type of flow itemy; it contains the containers in an oder. Filling

Base: Primer_18 (Sect252.253) orders from containers on Racks are managed through a List. The Racks may
contain initial inventory at the start of a simulation. An output table is generated
that captures informationon about each order. Charts are added to track the time
to fulfill orders and how many orders wait to be processed. Average time to

fulfill an order added as a Performance Measure.

Add an AGV system to transport containers from the Packing Area to the
Warchousing Area. The system includes a Control Area to restrict traffic in the
Primer 20 Chapter 26 areato one Task Executer. A small test segment is temporarily added to verify
Base: Primer_19 (Sect 261-265 that the Control Area works propetly. Base floor color is changed. Chart is
added to track the AGV's utilization. Utilization charts are also added for the
Robot and Order Picker.

Primer Final Chapter
Base: Primer_20 5-26

Full model with all windows closed.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 72 AUTODESK

ABOUT THE AUTHOR

Allen G. Greenwood, Ph.D.; P.E.(retired) allen.greenwood@autodesk.com

Currently, Allen is a Simulation Education Specialist at Autodesk and
Professor Emeritus of Industrial and Systems Engineering at Mississippi
State University. One of his long-term, foundational professional goals,
both in practice and in academe, has been to enhance and increase the
application of simulation to support the problem-solving and decision-
making processes.

In addition to his faculty positions at Mississippi State, he was Professor
of Engineering Management at Poznan University of Technology in
Poland, Professor and Chair of the Department of Engineering

Management at Prince Sultan University in the Kingdom of Saudi
Arabia, Professor of Engineering at the American University of Armenia, and Assistant Professor of
Management Sciences at Northeastern University and Virginia Tech.

At all of these institutions, he developed and taught courses in systems simulation at the undergraduate,
graduate, and professional levels. In addition, he taught courses in operations research / management science,
logistics systems design, enterprise systems engineering, project management, statistics, decision analysis,
information systems, etc.

Allen’s research interests/expertise include the design and analysis of production and project systems;
simulation modeling, analysis, and optimization; and the design and application of decision-support systems.

Before joining academia, he held engineering and supervisory positions at American Enka Company and
General Dynamics Corporation.

During his academic career, he has led or was a principal contributor to numerous industry projects, mainly in
systems simulation. As a result, his professional experience spans a wide variety of domains -- engineering
design and development (military aircraft and aerospace), manufacturing and production systems (military
aircraft, shipbuilding, automotive, textile fibers, healthcare, electrical systems, material handling systems,
consumer products, etc.), and project management. His work has been funded by such organizations as the US
Air Force Research Laboratory, Office of Naval Research, Naval Sea Systems Command, NASA, Northrop
Grumman Ship Systems, Nissan North America, General Electric Aviation, the Center for Advanced Vehicular
Systems (MSU), and Poznan University of Technology.

He has authored or co-authored over 150 creative works, including journal and conference papers, technical
reportts, software programs, etc. In addition, he is co-author of Applied Simulation: Modeling and Analysis Using
FlexcSim, currently in its fifth edition, and recently authored two primers, one focused on simulation in general
and one focused on using FlexSim software.

Allen received his B.S.ILE, M.S.LLE, and Ph.D. (Management Science) degrees from North Carolina State
University, University of Tennessee, and Virginia Tech, respectively. He is a registered Professional Engineer
(retired) in Texas.

FLEXSIM SIMULATION SOFTWARE PRIMER, 5TH EDITION 33 72 AUTODESK

	CoverBackground_Final
	FlexSim Simulation Software�Primer

	FY26 FlexSim Simulation Software Primer (EN)

